水基钻井泥浆配方中氧化镁纳米颗粒的表征

{"title":"水基钻井泥浆配方中氧化镁纳米颗粒的表征","authors":"","doi":"10.26634/jms.10.2.19040","DOIUrl":null,"url":null,"abstract":"This research is based on the synthesis and analysis to determine the efficiency and cost effectiveness of nanoparticle materials used in drilling fluid during oilfield exploration process. The study was carried out in the formulation of a waterbased drilling fluid, in which the prepared additives were treated with magnesium oxide (MgO) nanoparticles. The rheological properties of nanoparticle materials, such as flow time, viscosity, shear rate, shear stress, torque difference, and separation of solids and liquids, have been determined. The study also analyzed the fluid loss with respect to time in a manual filter press for low temperature and low pressure versus high pressure and high temperature using filter press hydraulic dead weight assembly in high temperature and high pressure. The nanoparticle used for the study was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer and particle size analyzer. Viscosity parameters were optimized using a multi-speed viscometer, lubricity tester and pH meter at effective concentration, as well as contact time, temperature and pressure changes as a function of concentration. The study suggests the use of MgO nanoparticle as an additive for water-based mud exploration in oilfields.","PeriodicalId":441295,"journal":{"name":"i-manager's Journal on Material Science","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of magnesium oxide nanoparticle for water-based drilling mud formulation\",\"authors\":\"\",\"doi\":\"10.26634/jms.10.2.19040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research is based on the synthesis and analysis to determine the efficiency and cost effectiveness of nanoparticle materials used in drilling fluid during oilfield exploration process. The study was carried out in the formulation of a waterbased drilling fluid, in which the prepared additives were treated with magnesium oxide (MgO) nanoparticles. The rheological properties of nanoparticle materials, such as flow time, viscosity, shear rate, shear stress, torque difference, and separation of solids and liquids, have been determined. The study also analyzed the fluid loss with respect to time in a manual filter press for low temperature and low pressure versus high pressure and high temperature using filter press hydraulic dead weight assembly in high temperature and high pressure. The nanoparticle used for the study was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer and particle size analyzer. Viscosity parameters were optimized using a multi-speed viscometer, lubricity tester and pH meter at effective concentration, as well as contact time, temperature and pressure changes as a function of concentration. The study suggests the use of MgO nanoparticle as an additive for water-based mud exploration in oilfields.\",\"PeriodicalId\":441295,\"journal\":{\"name\":\"i-manager's Journal on Material Science\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager's Journal on Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jms.10.2.19040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jms.10.2.19040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究是基于对油田勘探过程中钻井液中纳米颗粒材料的合成和分析,以确定其效率和成本效益。该研究是在水基钻井液配方中进行的,在所制备的添加剂中使用氧化镁纳米颗粒进行处理。测定了纳米颗粒材料的流变性能,如流动时间、粘度、剪切速率、剪切应力、扭矩差、固液分离等。该研究还分析了低温和低压手动压滤机与高压和高温下使用压滤机液压自重组件时的液体损失与时间的关系。利用傅里叶变换红外光谱(FTIR)、x射线衍射仪和粒度分析仪对所制备的纳米颗粒进行了表征。采用多速粘度计、润滑性测试仪和有效浓度下的pH计对粘度参数进行了优化,并对接触时间、温度和压力随浓度的变化进行了优化。本研究建议将纳米氧化镁颗粒作为水基泥浆勘探的添加剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of magnesium oxide nanoparticle for water-based drilling mud formulation
This research is based on the synthesis and analysis to determine the efficiency and cost effectiveness of nanoparticle materials used in drilling fluid during oilfield exploration process. The study was carried out in the formulation of a waterbased drilling fluid, in which the prepared additives were treated with magnesium oxide (MgO) nanoparticles. The rheological properties of nanoparticle materials, such as flow time, viscosity, shear rate, shear stress, torque difference, and separation of solids and liquids, have been determined. The study also analyzed the fluid loss with respect to time in a manual filter press for low temperature and low pressure versus high pressure and high temperature using filter press hydraulic dead weight assembly in high temperature and high pressure. The nanoparticle used for the study was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer and particle size analyzer. Viscosity parameters were optimized using a multi-speed viscometer, lubricity tester and pH meter at effective concentration, as well as contact time, temperature and pressure changes as a function of concentration. The study suggests the use of MgO nanoparticle as an additive for water-based mud exploration in oilfields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信