非线性倒立摆鲁棒控制的GWO新探索/开发

S. M. Djaouti, M. Khelfi, M. Malki, S. Mohammed
{"title":"非线性倒立摆鲁棒控制的GWO新探索/开发","authors":"S. M. Djaouti, M. Khelfi, M. Malki, S. Mohammed","doi":"10.4114/intartif.vol26iss72pp30-43","DOIUrl":null,"url":null,"abstract":"Tuning a nonlinear inverted pendulum is a complex and uncertain optimization problem. In this paper, we develop two new GWO variants by introducing a DLH (Dimension Learning-based Hunting) module and new formulas to enhance the exploitation/exploration ratio aiming to avoid local minima. A statistical analysis is carried out to compare the two proposed approaches with five GWO variants. After that, they are used to tune a PID and FSMC controller. The obtained results are promising even when compared to other approaches","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Exploration/Exploitation Improvements of GWO for Robust Control of a Nonlinear Inverted Pendulum\",\"authors\":\"S. M. Djaouti, M. Khelfi, M. Malki, S. Mohammed\",\"doi\":\"10.4114/intartif.vol26iss72pp30-43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuning a nonlinear inverted pendulum is a complex and uncertain optimization problem. In this paper, we develop two new GWO variants by introducing a DLH (Dimension Learning-based Hunting) module and new formulas to enhance the exploitation/exploration ratio aiming to avoid local minima. A statistical analysis is carried out to compare the two proposed approaches with five GWO variants. After that, they are used to tune a PID and FSMC controller. The obtained results are promising even when compared to other approaches\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/intartif.vol26iss72pp30-43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol26iss72pp30-43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非线性倒立摆的整定是一个复杂的不确定优化问题。在本文中,我们通过引入DLH (Dimension Learning-based Hunting)模块和新的公式来开发两个新的GWO变体,以提高开发/探索比,以避免局部最小值。对这两种方法与五种GWO变量进行了统计分析。之后,它们被用来调整PID和FSMC控制器。即使与其他方法相比,所获得的结果也是有希望的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Exploration/Exploitation Improvements of GWO for Robust Control of a Nonlinear Inverted Pendulum
Tuning a nonlinear inverted pendulum is a complex and uncertain optimization problem. In this paper, we develop two new GWO variants by introducing a DLH (Dimension Learning-based Hunting) module and new formulas to enhance the exploitation/exploration ratio aiming to avoid local minima. A statistical analysis is carried out to compare the two proposed approaches with five GWO variants. After that, they are used to tune a PID and FSMC controller. The obtained results are promising even when compared to other approaches
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信