I. Growns, Iris Wing Tsoi, M. Southwell, S. Mika, Sam Lewis, B. Vincent
{"title":"水文对河道及湿地生境大型无脊椎动物性状的影响","authors":"I. Growns, Iris Wing Tsoi, M. Southwell, S. Mika, Sam Lewis, B. Vincent","doi":"10.14321/aehm.024.04.12","DOIUrl":null,"url":null,"abstract":"Increased need for freshwater for human uses from the mid-1900s has severely impacted rivers and floodplain wetlands so that they are some of the most seriously degraded environments in the world. Research and monitoring in this area to date has focused on understanding ‘flow-ecology’ relationships, without investigating the mechanisms underlying them. The use of species traits offers a tool for defining mechanistic connections between biotic responses and environmental conditions. We examined nine macroinvertebrate trait categories in both wetlands and channels to determine whether their profiles responded to hydrology in the Gwydir River system in the northern Murray-Darling Basin, Australia. Trait responses were shown for the wetlands but not the river channels. Twelve traits showed positive relationships with the time the wetlands were connected to their river channels. It is unclear the reason(s) why the river channel invertebrate traits did not respond to hydrology. However, the use of environmental flows in the river systems may be important to other aspects of macroinvertebrate assemblages such as their role in food webs to support higher-order consumers.","PeriodicalId":421207,"journal":{"name":"Aquatic Ecosystem Health and Management","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of hydrology on macroinvertebrate traits in river channel and wetland habitats\",\"authors\":\"I. Growns, Iris Wing Tsoi, M. Southwell, S. Mika, Sam Lewis, B. Vincent\",\"doi\":\"10.14321/aehm.024.04.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased need for freshwater for human uses from the mid-1900s has severely impacted rivers and floodplain wetlands so that they are some of the most seriously degraded environments in the world. Research and monitoring in this area to date has focused on understanding ‘flow-ecology’ relationships, without investigating the mechanisms underlying them. The use of species traits offers a tool for defining mechanistic connections between biotic responses and environmental conditions. We examined nine macroinvertebrate trait categories in both wetlands and channels to determine whether their profiles responded to hydrology in the Gwydir River system in the northern Murray-Darling Basin, Australia. Trait responses were shown for the wetlands but not the river channels. Twelve traits showed positive relationships with the time the wetlands were connected to their river channels. It is unclear the reason(s) why the river channel invertebrate traits did not respond to hydrology. However, the use of environmental flows in the river systems may be important to other aspects of macroinvertebrate assemblages such as their role in food webs to support higher-order consumers.\",\"PeriodicalId\":421207,\"journal\":{\"name\":\"Aquatic Ecosystem Health and Management\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Ecosystem Health and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/aehm.024.04.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Ecosystem Health and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/aehm.024.04.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effects of hydrology on macroinvertebrate traits in river channel and wetland habitats
Increased need for freshwater for human uses from the mid-1900s has severely impacted rivers and floodplain wetlands so that they are some of the most seriously degraded environments in the world. Research and monitoring in this area to date has focused on understanding ‘flow-ecology’ relationships, without investigating the mechanisms underlying them. The use of species traits offers a tool for defining mechanistic connections between biotic responses and environmental conditions. We examined nine macroinvertebrate trait categories in both wetlands and channels to determine whether their profiles responded to hydrology in the Gwydir River system in the northern Murray-Darling Basin, Australia. Trait responses were shown for the wetlands but not the river channels. Twelve traits showed positive relationships with the time the wetlands were connected to their river channels. It is unclear the reason(s) why the river channel invertebrate traits did not respond to hydrology. However, the use of environmental flows in the river systems may be important to other aspects of macroinvertebrate assemblages such as their role in food webs to support higher-order consumers.