基于误差估计的神经网络控制器抗干扰设计

P. Chan, Bo Peng, Wing W. Y. Ng, D. Yeung
{"title":"基于误差估计的神经网络控制器抗干扰设计","authors":"P. Chan, Bo Peng, Wing W. Y. Ng, D. Yeung","doi":"10.1109/ICMLC.2011.6016931","DOIUrl":null,"url":null,"abstract":"Disturbance rejection is an important factor in evaluating the performance of a control system. By using error estimations, we expand a virtual area among actual error points in the error space which is composed of runtime errors and their derivatives. Rather than driving our neural network controller (NNC) with actual error signals, we utilize virtual error signals under different expanding parameters. Simulations have successfully shown that out method could resist unexpected disturbance in many cases.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disturbance rejection using error estimation in neural network controller design\",\"authors\":\"P. Chan, Bo Peng, Wing W. Y. Ng, D. Yeung\",\"doi\":\"10.1109/ICMLC.2011.6016931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disturbance rejection is an important factor in evaluating the performance of a control system. By using error estimations, we expand a virtual area among actual error points in the error space which is composed of runtime errors and their derivatives. Rather than driving our neural network controller (NNC) with actual error signals, we utilize virtual error signals under different expanding parameters. Simulations have successfully shown that out method could resist unexpected disturbance in many cases.\",\"PeriodicalId\":228516,\"journal\":{\"name\":\"2011 International Conference on Machine Learning and Cybernetics\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2011.6016931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抗干扰性是评价控制系统性能的一个重要因素。通过误差估计,在由运行时误差及其导数组成的误差空间中,在实际误差点之间展开一个虚拟区域。我们利用不同扩展参数下的虚拟误差信号来驱动神经网络控制器,而不是用实际误差信号来驱动。仿真结果表明,该方法在许多情况下都能有效地抵抗非预期干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disturbance rejection using error estimation in neural network controller design
Disturbance rejection is an important factor in evaluating the performance of a control system. By using error estimations, we expand a virtual area among actual error points in the error space which is composed of runtime errors and their derivatives. Rather than driving our neural network controller (NNC) with actual error signals, we utilize virtual error signals under different expanding parameters. Simulations have successfully shown that out method could resist unexpected disturbance in many cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信