基于电感耦合功率传输的非接触式旋转装置设计

H. Zong, Xiangjun Zhang, Xiaorui Zhang, Yijie Wang, Dianguo Xu, Hailin Tian, Xiufang Liu, D. Yan
{"title":"基于电感耦合功率传输的非接触式旋转装置设计","authors":"H. Zong, Xiangjun Zhang, Xiaorui Zhang, Yijie Wang, Dianguo Xu, Hailin Tian, Xiufang Liu, D. Yan","doi":"10.1109/SPEC.2018.8636022","DOIUrl":null,"url":null,"abstract":"Contact-type rotary electronic devices have the disadvantages of easy wear and no electrical isolation, which is not conducive to the safety and reliability of the device. In this paper, a contactless rotary inductively coupled power transfer (ICPT) device has been proposed, which provides electrical isolation, higher flexibility and greater security. The device consists of a rotary loosely coupled transformer, S/LCC compensated resonant converter and a DC-DC converter. To verify the analysis and design, a 400W rotatable prototype with a 50mm gap was fabricated and tested. An overall efficiency 84.3% was achieved from DC 40V input to DC 40 V output.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Contactless Rotary Device Based on Inductively Coupled Power Transfer\",\"authors\":\"H. Zong, Xiangjun Zhang, Xiaorui Zhang, Yijie Wang, Dianguo Xu, Hailin Tian, Xiufang Liu, D. Yan\",\"doi\":\"10.1109/SPEC.2018.8636022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contact-type rotary electronic devices have the disadvantages of easy wear and no electrical isolation, which is not conducive to the safety and reliability of the device. In this paper, a contactless rotary inductively coupled power transfer (ICPT) device has been proposed, which provides electrical isolation, higher flexibility and greater security. The device consists of a rotary loosely coupled transformer, S/LCC compensated resonant converter and a DC-DC converter. To verify the analysis and design, a 400W rotatable prototype with a 50mm gap was fabricated and tested. An overall efficiency 84.3% was achieved from DC 40V input to DC 40 V output.\",\"PeriodicalId\":335893,\"journal\":{\"name\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2018.8636022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8636022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

接触式旋转电子设备易磨损,无电气隔离,不利于设备的安全可靠性。本文提出了一种具有电隔离、灵活性和安全性的非接触旋转电感耦合功率传输装置。该器件由旋转松耦合变压器、S/LCC补偿谐振变换器和DC-DC变换器组成。为了验证分析和设计,制作了一个400W的可旋转样机,并进行了50mm间隙的测试。从直流40V输入到直流40V输出,总效率达到84.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a Contactless Rotary Device Based on Inductively Coupled Power Transfer
Contact-type rotary electronic devices have the disadvantages of easy wear and no electrical isolation, which is not conducive to the safety and reliability of the device. In this paper, a contactless rotary inductively coupled power transfer (ICPT) device has been proposed, which provides electrical isolation, higher flexibility and greater security. The device consists of a rotary loosely coupled transformer, S/LCC compensated resonant converter and a DC-DC converter. To verify the analysis and design, a 400W rotatable prototype with a 50mm gap was fabricated and tested. An overall efficiency 84.3% was achieved from DC 40V input to DC 40 V output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信