Norick R. Bowers, A. Gibaldi, Emma Alexander, M. Banks, A. Roorda
{"title":"使用扫描激光检眼镜进行高分辨率眼动追踪","authors":"Norick R. Bowers, A. Gibaldi, Emma Alexander, M. Banks, A. Roorda","doi":"10.1145/3314111.3322877","DOIUrl":null,"url":null,"abstract":"Current eye-tracking techniques rely primarily on video-based tracking of components of the anterior surfaces of the eye. However, these trackers have several limitations. Their limited resolution precludes study of small fixational eye motion. Furthermore, many of these trackers rely on calibration procedures that do not offer a way to validate their eye motion traces. By comparison, retinal-image-based trackers can track the motion of the retinal image directly, at frequencies greater than 1kHz and with subarcminute accuracy. The retinal image provides a way to validate the eye position at any point in time, offering an unambiguous record of eye motion as a reference for the eye trace. The benefits of using scanning retinal imaging systems as eye trackers, however, comes at the price of different problems that are not present in video-based systems, and need to be solved to obtain robust eye traces. The current abstract provides an overview of retinal-image-based eye tracking methods, provides preliminary eye-tracking results from a tracking scanning-laser ophthalmoscope (TSLO), and proposes a new binocular line-scanning eye-tracking system.","PeriodicalId":161901,"journal":{"name":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-resolution eye tracking using scanning laser ophthalmoscopy\",\"authors\":\"Norick R. Bowers, A. Gibaldi, Emma Alexander, M. Banks, A. Roorda\",\"doi\":\"10.1145/3314111.3322877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current eye-tracking techniques rely primarily on video-based tracking of components of the anterior surfaces of the eye. However, these trackers have several limitations. Their limited resolution precludes study of small fixational eye motion. Furthermore, many of these trackers rely on calibration procedures that do not offer a way to validate their eye motion traces. By comparison, retinal-image-based trackers can track the motion of the retinal image directly, at frequencies greater than 1kHz and with subarcminute accuracy. The retinal image provides a way to validate the eye position at any point in time, offering an unambiguous record of eye motion as a reference for the eye trace. The benefits of using scanning retinal imaging systems as eye trackers, however, comes at the price of different problems that are not present in video-based systems, and need to be solved to obtain robust eye traces. The current abstract provides an overview of retinal-image-based eye tracking methods, provides preliminary eye-tracking results from a tracking scanning-laser ophthalmoscope (TSLO), and proposes a new binocular line-scanning eye-tracking system.\",\"PeriodicalId\":161901,\"journal\":{\"name\":\"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314111.3322877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314111.3322877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-resolution eye tracking using scanning laser ophthalmoscopy
Current eye-tracking techniques rely primarily on video-based tracking of components of the anterior surfaces of the eye. However, these trackers have several limitations. Their limited resolution precludes study of small fixational eye motion. Furthermore, many of these trackers rely on calibration procedures that do not offer a way to validate their eye motion traces. By comparison, retinal-image-based trackers can track the motion of the retinal image directly, at frequencies greater than 1kHz and with subarcminute accuracy. The retinal image provides a way to validate the eye position at any point in time, offering an unambiguous record of eye motion as a reference for the eye trace. The benefits of using scanning retinal imaging systems as eye trackers, however, comes at the price of different problems that are not present in video-based systems, and need to be solved to obtain robust eye traces. The current abstract provides an overview of retinal-image-based eye tracking methods, provides preliminary eye-tracking results from a tracking scanning-laser ophthalmoscope (TSLO), and proposes a new binocular line-scanning eye-tracking system.