基于模糊推理的低功耗传感器网络延迟与信道感知通信

J. Singh, D. Pesch
{"title":"基于模糊推理的低功耗传感器网络延迟与信道感知通信","authors":"J. Singh, D. Pesch","doi":"10.1109/DCOSS.2012.56","DOIUrl":null,"url":null,"abstract":"Traditionally, transmission power is adjusted dynamically to overcome unreliability over lossy links in energy-constrained Wireless Sensor Networks (WSNs). The network node increases its transmission power to achieve immunity against link errors or lowers the power to save energy and prevent interference. Through systematic analysis, we illuminate that it adversely affects the channel contention, network throughput and energy consumption at network scale. Therefore, we implement a novel but effective Fuzzy Inference based Delay and Channel aware Communication (FI-DACC) mechanism at WSN nodes which employs lightweight Forward Error Correction (FEC) codes at low transmission power. Besides selecting an adequate FEC code, the proposed strategy also tunes MAC layer back off duration to prevent packet collisions. To simplify the decision process, a cascaded structure of two fuzzy logic controllers is formulated that undertakes heterogeneous parameters into account. We integrate our solution into IEEE802.15.4 based energy constrained WSN scenarios and evaluate the scheme from real-time packet delivery viewpoint. Results indicate that the proposed approach enhances network real-time capacity with low energy overheads as compared to alternative schemes, for e.g. Real-time Power Routing (RPAR), adaptive power control, hybrid, Interference-aware Transmission Power Control (I-TPC) [4].","PeriodicalId":448418,"journal":{"name":"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fuzzy Inference Based Delay and Channel Aware Communication in Low-Power Sensor Networks\",\"authors\":\"J. Singh, D. Pesch\",\"doi\":\"10.1109/DCOSS.2012.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, transmission power is adjusted dynamically to overcome unreliability over lossy links in energy-constrained Wireless Sensor Networks (WSNs). The network node increases its transmission power to achieve immunity against link errors or lowers the power to save energy and prevent interference. Through systematic analysis, we illuminate that it adversely affects the channel contention, network throughput and energy consumption at network scale. Therefore, we implement a novel but effective Fuzzy Inference based Delay and Channel aware Communication (FI-DACC) mechanism at WSN nodes which employs lightweight Forward Error Correction (FEC) codes at low transmission power. Besides selecting an adequate FEC code, the proposed strategy also tunes MAC layer back off duration to prevent packet collisions. To simplify the decision process, a cascaded structure of two fuzzy logic controllers is formulated that undertakes heterogeneous parameters into account. We integrate our solution into IEEE802.15.4 based energy constrained WSN scenarios and evaluate the scheme from real-time packet delivery viewpoint. Results indicate that the proposed approach enhances network real-time capacity with low energy overheads as compared to alternative schemes, for e.g. Real-time Power Routing (RPAR), adaptive power control, hybrid, Interference-aware Transmission Power Control (I-TPC) [4].\",\"PeriodicalId\":448418,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCOSS.2012.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS.2012.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传统上,在能量受限的无线传感器网络(WSNs)中,传输功率是动态调整的,以克服损耗链路上的不可靠性。网络节点可以通过增加传输功率来避免链路错误,也可以通过降低传输功率来节省能源和防止干扰。通过系统的分析,我们阐明了在网络规模下,它对信道争用、网络吞吐量和能源消耗有不利的影响。因此,我们在WSN节点上实现了一种新颖而有效的基于模糊推理的延迟和信道感知通信(FI-DACC)机制,该机制在低传输功率下采用轻量级前向纠错(FEC)码。除了选择合适的FEC码外,该策略还调整了MAC层后退持续时间以防止分组冲突。为了简化决策过程,提出了考虑异构参数的两个模糊控制器级联结构。我们将该方案集成到基于IEEE802.15.4的能量约束WSN场景中,并从实时分组传输的角度对该方案进行了评估。结果表明,与实时功率路由(RPAR)、自适应功率控制、混合、干扰感知传输功率控制(I-TPC)等替代方案相比,所提出的方法以低能耗开销增强了网络实时容量[4]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Inference Based Delay and Channel Aware Communication in Low-Power Sensor Networks
Traditionally, transmission power is adjusted dynamically to overcome unreliability over lossy links in energy-constrained Wireless Sensor Networks (WSNs). The network node increases its transmission power to achieve immunity against link errors or lowers the power to save energy and prevent interference. Through systematic analysis, we illuminate that it adversely affects the channel contention, network throughput and energy consumption at network scale. Therefore, we implement a novel but effective Fuzzy Inference based Delay and Channel aware Communication (FI-DACC) mechanism at WSN nodes which employs lightweight Forward Error Correction (FEC) codes at low transmission power. Besides selecting an adequate FEC code, the proposed strategy also tunes MAC layer back off duration to prevent packet collisions. To simplify the decision process, a cascaded structure of two fuzzy logic controllers is formulated that undertakes heterogeneous parameters into account. We integrate our solution into IEEE802.15.4 based energy constrained WSN scenarios and evaluate the scheme from real-time packet delivery viewpoint. Results indicate that the proposed approach enhances network real-time capacity with low energy overheads as compared to alternative schemes, for e.g. Real-time Power Routing (RPAR), adaptive power control, hybrid, Interference-aware Transmission Power Control (I-TPC) [4].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信