用数值极大似然估计银河模型参数

Back to the Galaxy Pub Date : 2008-05-29 DOI:10.1063/1.44002
K. Ratnatunga, S. Casertano
{"title":"用数值极大似然估计银河模型参数","authors":"K. Ratnatunga, S. Casertano","doi":"10.1063/1.44002","DOIUrl":null,"url":null,"abstract":"We discuss a numerical algorithm based on maximum likelihood for estimating parameters for models of the Galaxy. We use simultaneously all the information available in a catalog of stellar data in a global optimization, to derive unbiased estimates of intrinsic stellar properties, such as luminosity and velocity dispersion. The likelihood function is defined in the observed domain using quantities such as photoelectric photometry, line‐of‐sight velocity, proper motion, trigonometric parallax, and metallicity. Individual stars included in the statistical analysis can have different amounts of information available. This method includes an explicit treatment of observational errors, can identify outliers objectively and allows use of stellar data with relatively large errors. It can self‐consistently detect and correct for systematic deviations in the observations, such as zero point residuals or underestimated errors.","PeriodicalId":310353,"journal":{"name":"Back to the Galaxy","volume":"278 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galaxy model parameters using numerical maximum likelihood estimation\",\"authors\":\"K. Ratnatunga, S. Casertano\",\"doi\":\"10.1063/1.44002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a numerical algorithm based on maximum likelihood for estimating parameters for models of the Galaxy. We use simultaneously all the information available in a catalog of stellar data in a global optimization, to derive unbiased estimates of intrinsic stellar properties, such as luminosity and velocity dispersion. The likelihood function is defined in the observed domain using quantities such as photoelectric photometry, line‐of‐sight velocity, proper motion, trigonometric parallax, and metallicity. Individual stars included in the statistical analysis can have different amounts of information available. This method includes an explicit treatment of observational errors, can identify outliers objectively and allows use of stellar data with relatively large errors. It can self‐consistently detect and correct for systematic deviations in the observations, such as zero point residuals or underestimated errors.\",\"PeriodicalId\":310353,\"journal\":{\"name\":\"Back to the Galaxy\",\"volume\":\"278 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Back to the Galaxy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.44002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Back to the Galaxy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.44002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了一种基于极大似然的数值算法来估计银河系模型的参数。我们同时使用恒星数据目录中的所有可用信息进行全局优化,以得出恒星固有特性的无偏估计,例如光度和速度色散。似然函数在观测域中使用诸如光电光度、视线速度、固有运动、三角视差和金属丰度等量来定义。统计分析中包含的单个恒星可以获得不同数量的信息。这种方法包括对观测误差的明确处理,可以客观地识别异常值,并允许使用误差相对较大的恒星数据。它可以自一致地检测和纠正观测中的系统偏差,如零点残差或低估的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galaxy model parameters using numerical maximum likelihood estimation
We discuss a numerical algorithm based on maximum likelihood for estimating parameters for models of the Galaxy. We use simultaneously all the information available in a catalog of stellar data in a global optimization, to derive unbiased estimates of intrinsic stellar properties, such as luminosity and velocity dispersion. The likelihood function is defined in the observed domain using quantities such as photoelectric photometry, line‐of‐sight velocity, proper motion, trigonometric parallax, and metallicity. Individual stars included in the statistical analysis can have different amounts of information available. This method includes an explicit treatment of observational errors, can identify outliers objectively and allows use of stellar data with relatively large errors. It can self‐consistently detect and correct for systematic deviations in the observations, such as zero point residuals or underestimated errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信