一种基于SFSVC算法的低复杂度分类器解决方案

Alin-Gabriel Cococi, Daniel Armanda, R. Dogaru, I. Dogaru
{"title":"一种基于SFSVC算法的低复杂度分类器解决方案","authors":"Alin-Gabriel Cococi, Daniel Armanda, R. Dogaru, I. Dogaru","doi":"10.1109/ISEEE.2017.8170696","DOIUrl":null,"url":null,"abstract":"The SFSVC (Super Fast Support Vector Classifier) architecture is implemented to a computational mobile platform and its performances are evaluated against its implementation on a classic machine (personal computer). The aim of this article is to prove that the SFSVC architecture can have good performances on an environment with very limited resources by taking advantages of its compact structure and fast algorithm. SFSVC does not need synaptic weights optimization, its only tunable parameters for a better generalization are the radius of the basis function and an overlapping parameter.","PeriodicalId":276733,"journal":{"name":"2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low complexity classifier solution for mobile applications using SFSVC algorithm\",\"authors\":\"Alin-Gabriel Cococi, Daniel Armanda, R. Dogaru, I. Dogaru\",\"doi\":\"10.1109/ISEEE.2017.8170696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SFSVC (Super Fast Support Vector Classifier) architecture is implemented to a computational mobile platform and its performances are evaluated against its implementation on a classic machine (personal computer). The aim of this article is to prove that the SFSVC architecture can have good performances on an environment with very limited resources by taking advantages of its compact structure and fast algorithm. SFSVC does not need synaptic weights optimization, its only tunable parameters for a better generalization are the radius of the basis function and an overlapping parameter.\",\"PeriodicalId\":276733,\"journal\":{\"name\":\"2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEEE.2017.8170696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEEE.2017.8170696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将SFSVC (Super Fast Support Vector Classifier,超快速支持向量分类器)体系结构实现在计算移动平台上,并与其在经典机器(个人计算机)上的实现进行了性能评估。本文的目的是为了证明SFSVC架构可以利用其紧凑的结构和快速的算法在资源非常有限的环境下具有良好的性能。SFSVC不需要突触权重优化,其唯一可调的参数是基函数的半径和重叠参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low complexity classifier solution for mobile applications using SFSVC algorithm
The SFSVC (Super Fast Support Vector Classifier) architecture is implemented to a computational mobile platform and its performances are evaluated against its implementation on a classic machine (personal computer). The aim of this article is to prove that the SFSVC architecture can have good performances on an environment with very limited resources by taking advantages of its compact structure and fast algorithm. SFSVC does not need synaptic weights optimization, its only tunable parameters for a better generalization are the radius of the basis function and an overlapping parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信