一种新的具有快速迭代收敛速度的随机原对偶凸优化算法

Quoc Tran-Dinh, Deyi Liu
{"title":"一种新的具有快速迭代收敛速度的随机原对偶凸优化算法","authors":"Quoc Tran-Dinh, Deyi Liu","doi":"10.1080/10556788.2022.2119233","DOIUrl":null,"url":null,"abstract":"We develop a novel unified randomized block-coordinate primal-dual algorithm to solve a class of nonsmooth constrained convex optimization problems, which covers different existing variants and model settings from the literature. We prove that our algorithm achieves and convergence rates in two cases: merely convexity and strong convexity, respectively, where k is the iteration counter and n is the number of block-coordinates. These rates are known to be optimal (up to a constant factor) when n = 1. Our convergence rates are obtained through three criteria: primal objective residual and primal feasibility violation, dual objective residual, and primal-dual expected gap. Moreover, our rates for the primal problem are on the last-iterate sequence. Our dual convergence guarantee requires additionally a Lipschitz continuity assumption. We specify our algorithm to handle two important special cases, where our rates are still applied. Finally, we verify our algorithm on two well-studied numerical examples and compare it with two existing methods. Our results show that the proposed method has encouraging performance on different experiments.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new randomized primal-dual algorithm for convex optimization with fast last iterate convergence rates\",\"authors\":\"Quoc Tran-Dinh, Deyi Liu\",\"doi\":\"10.1080/10556788.2022.2119233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a novel unified randomized block-coordinate primal-dual algorithm to solve a class of nonsmooth constrained convex optimization problems, which covers different existing variants and model settings from the literature. We prove that our algorithm achieves and convergence rates in two cases: merely convexity and strong convexity, respectively, where k is the iteration counter and n is the number of block-coordinates. These rates are known to be optimal (up to a constant factor) when n = 1. Our convergence rates are obtained through three criteria: primal objective residual and primal feasibility violation, dual objective residual, and primal-dual expected gap. Moreover, our rates for the primal problem are on the last-iterate sequence. Our dual convergence guarantee requires additionally a Lipschitz continuity assumption. We specify our algorithm to handle two important special cases, where our rates are still applied. Finally, we verify our algorithm on two well-studied numerical examples and compare it with two existing methods. Our results show that the proposed method has encouraging performance on different experiments.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2119233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2119233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对一类非光滑约束凸优化问题,提出了一种新的统一的随机块坐标原始对偶算法,该算法涵盖了文献中不同的现有变量和模型设置。我们证明了我们的算法分别在两种情况下达到和收敛速度:单纯凸性和强凸性,其中k是迭代计数器,n是块坐标数。当n = 1时,这些速率已知是最优的(直到一个常数因子)。我们的收敛速度通过三个准则得到:原始目标残差和原始可行性违反,对偶目标残差和原始-对偶期望差。此外,我们的原始问题的速率是在最后迭代序列上。我们的对偶收敛保证还需要一个Lipschitz连续性假设。我们指定我们的算法来处理两种重要的特殊情况,其中我们的速率仍然适用。最后,通过两个研究充分的数值算例验证了算法的正确性,并与现有的两种方法进行了比较。实验结果表明,该方法在不同的实验中都取得了令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new randomized primal-dual algorithm for convex optimization with fast last iterate convergence rates
We develop a novel unified randomized block-coordinate primal-dual algorithm to solve a class of nonsmooth constrained convex optimization problems, which covers different existing variants and model settings from the literature. We prove that our algorithm achieves and convergence rates in two cases: merely convexity and strong convexity, respectively, where k is the iteration counter and n is the number of block-coordinates. These rates are known to be optimal (up to a constant factor) when n = 1. Our convergence rates are obtained through three criteria: primal objective residual and primal feasibility violation, dual objective residual, and primal-dual expected gap. Moreover, our rates for the primal problem are on the last-iterate sequence. Our dual convergence guarantee requires additionally a Lipschitz continuity assumption. We specify our algorithm to handle two important special cases, where our rates are still applied. Finally, we verify our algorithm on two well-studied numerical examples and compare it with two existing methods. Our results show that the proposed method has encouraging performance on different experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信