基于对抗自编码器和k近邻规则的批处理故障监控

Zeyu Li, Peng Chang, Kai Wang, Pu Wang
{"title":"基于对抗自编码器和k近邻规则的批处理故障监控","authors":"Zeyu Li, Peng Chang, Kai Wang, Pu Wang","doi":"10.1109/DDCLS52934.2021.9455504","DOIUrl":null,"url":null,"abstract":"In the industrial batch process monitoring domain, the conventional multivariate monitoring methods may not always function well in monitoring faults that have both Non-Linear and Non-Gaussian properties. To enhance the monitoring capability, the adversarial auto-encoder (AAE) was introduced to increase the sensitivity to Non-Gaussian anomalies by projecting non-Gaussian information into a given Gaussian distribution feature space. At the same time, low-dimensional feature space can avoid the problem of “Concentration of measure” and improve the ability to distinguish minor small abnormalities. Therefore, A novel statistic index was constructed in the feature space based on the k-nearest neighbor rule (KNN) to improve the ability of minor fault monitoring. The proposed model is compared with the traditional multivariate statistical process monitoring methods in numerical examples and penicillin fermentation platform, which proves that it has better monitoring ability for minor magnitude and non-Gaussian faults.","PeriodicalId":325897,"journal":{"name":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Batch Process Fault Monitoring Using Adversarial Auto-encoder and K-Nearest Neighbor Rule\",\"authors\":\"Zeyu Li, Peng Chang, Kai Wang, Pu Wang\",\"doi\":\"10.1109/DDCLS52934.2021.9455504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the industrial batch process monitoring domain, the conventional multivariate monitoring methods may not always function well in monitoring faults that have both Non-Linear and Non-Gaussian properties. To enhance the monitoring capability, the adversarial auto-encoder (AAE) was introduced to increase the sensitivity to Non-Gaussian anomalies by projecting non-Gaussian information into a given Gaussian distribution feature space. At the same time, low-dimensional feature space can avoid the problem of “Concentration of measure” and improve the ability to distinguish minor small abnormalities. Therefore, A novel statistic index was constructed in the feature space based on the k-nearest neighbor rule (KNN) to improve the ability of minor fault monitoring. The proposed model is compared with the traditional multivariate statistical process monitoring methods in numerical examples and penicillin fermentation platform, which proves that it has better monitoring ability for minor magnitude and non-Gaussian faults.\",\"PeriodicalId\":325897,\"journal\":{\"name\":\"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS52934.2021.9455504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS52934.2021.9455504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在工业批处理过程监测领域,传统的多变量监测方法在监测同时具有非线性和非高斯性质的故障时往往不能很好地发挥作用。为了提高监测能力,引入了对抗性自编码器(AAE),通过将非高斯信息投射到给定的高斯分布特征空间中来提高对非高斯异常的灵敏度。同时,低维特征空间可以避免“测度集中”的问题,提高对微小异常的识别能力。为此,基于k近邻规则(KNN)在特征空间中构造了一种新的统计指标,以提高小故障监测能力。将该模型与传统的多元统计过程监测方法进行数值算例和青霉素发酵平台的比较,证明该模型具有较好的小量级非高斯故障监测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Batch Process Fault Monitoring Using Adversarial Auto-encoder and K-Nearest Neighbor Rule
In the industrial batch process monitoring domain, the conventional multivariate monitoring methods may not always function well in monitoring faults that have both Non-Linear and Non-Gaussian properties. To enhance the monitoring capability, the adversarial auto-encoder (AAE) was introduced to increase the sensitivity to Non-Gaussian anomalies by projecting non-Gaussian information into a given Gaussian distribution feature space. At the same time, low-dimensional feature space can avoid the problem of “Concentration of measure” and improve the ability to distinguish minor small abnormalities. Therefore, A novel statistic index was constructed in the feature space based on the k-nearest neighbor rule (KNN) to improve the ability of minor fault monitoring. The proposed model is compared with the traditional multivariate statistical process monitoring methods in numerical examples and penicillin fermentation platform, which proves that it has better monitoring ability for minor magnitude and non-Gaussian faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信