神经网络训练中扩展卡尔曼滤波与Levenberg-Marquardt方法的比较

P. Deossa, J. Patino, J. Espinosa, F. Valencia
{"title":"神经网络训练中扩展卡尔曼滤波与Levenberg-Marquardt方法的比较","authors":"P. Deossa, J. Patino, J. Espinosa, F. Valencia","doi":"10.1109/LARC.2011.6086835","DOIUrl":null,"url":null,"abstract":"This paper presents a performance comparison of both the Levenverg-Marquardt and Extended Kalman Filter methods for neural network training. As a testbed, an indoor localization problem was solved by the neural network from the RSSI data obtained through a experimental measurement. Both methods were used to train the network, and the MSE (mean squared error) was employed as the performance metric.","PeriodicalId":419849,"journal":{"name":"IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A comparison of Extended Kalman Filter and Levenberg-Marquardt methods for neural network training\",\"authors\":\"P. Deossa, J. Patino, J. Espinosa, F. Valencia\",\"doi\":\"10.1109/LARC.2011.6086835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a performance comparison of both the Levenverg-Marquardt and Extended Kalman Filter methods for neural network training. As a testbed, an indoor localization problem was solved by the neural network from the RSSI data obtained through a experimental measurement. Both methods were used to train the network, and the MSE (mean squared error) was employed as the performance metric.\",\"PeriodicalId\":419849,\"journal\":{\"name\":\"IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LARC.2011.6086835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LARC.2011.6086835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文比较了Levenverg-Marquardt和扩展卡尔曼滤波方法在神经网络训练中的性能。作为测试平台,利用实验测量得到的RSSI数据,利用神经网络解决室内定位问题。使用这两种方法对网络进行训练,并采用均方误差(MSE)作为性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of Extended Kalman Filter and Levenberg-Marquardt methods for neural network training
This paper presents a performance comparison of both the Levenverg-Marquardt and Extended Kalman Filter methods for neural network training. As a testbed, an indoor localization problem was solved by the neural network from the RSSI data obtained through a experimental measurement. Both methods were used to train the network, and the MSE (mean squared error) was employed as the performance metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信