基于q学习的多路口交通信号控制模型

Jiong Song, Zhao Jin
{"title":"基于q学习的多路口交通信号控制模型","authors":"Jiong Song, Zhao Jin","doi":"10.1109/ICSSEM.2011.6081298","DOIUrl":null,"url":null,"abstract":"In multi-intersection urban traffic environment, conventional fixed-time traffic signal control methods expose low performance when face with complex and stochastic traffic conditions which caused by the interaction among multiple intersections. A Q-learning based traffic signal control model is proposed to deal with time-varying and stochastic traffic flow problem, which takes advantage of the specialty of autonomous learning inherent in Q-learning. The capacity of discovering autonomously optimal control policy corresponding to varying traffic conditions and no fixed mathematic control model is needed are the major advantages of this method. The experiment results in simulation environment also demonstrate this method is applicable and effective.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Q-learning based multi-intersection traffic signal control model\",\"authors\":\"Jiong Song, Zhao Jin\",\"doi\":\"10.1109/ICSSEM.2011.6081298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multi-intersection urban traffic environment, conventional fixed-time traffic signal control methods expose low performance when face with complex and stochastic traffic conditions which caused by the interaction among multiple intersections. A Q-learning based traffic signal control model is proposed to deal with time-varying and stochastic traffic flow problem, which takes advantage of the specialty of autonomous learning inherent in Q-learning. The capacity of discovering autonomously optimal control policy corresponding to varying traffic conditions and no fixed mathematic control model is needed are the major advantages of this method. The experiment results in simulation environment also demonstrate this method is applicable and effective.\",\"PeriodicalId\":406311,\"journal\":{\"name\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSEM.2011.6081298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在多交叉口的城市交通环境中,传统的固定时间交通信号控制方法在面对多交叉口相互作用导致的复杂、随机交通状况时,表现出较低的控制性能。针对时变随机交通流问题,利用q学习的自主学习特性,提出了一种基于q学习的交通信号控制模型。该方法的主要优点是能够根据不同的交通状况自主发现最优控制策略,并且不需要固定的数学控制模型。仿真环境下的实验结果也证明了该方法的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Q-learning based multi-intersection traffic signal control model
In multi-intersection urban traffic environment, conventional fixed-time traffic signal control methods expose low performance when face with complex and stochastic traffic conditions which caused by the interaction among multiple intersections. A Q-learning based traffic signal control model is proposed to deal with time-varying and stochastic traffic flow problem, which takes advantage of the specialty of autonomous learning inherent in Q-learning. The capacity of discovering autonomously optimal control policy corresponding to varying traffic conditions and no fixed mathematic control model is needed are the major advantages of this method. The experiment results in simulation environment also demonstrate this method is applicable and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信