结构化Span选择器

Tianyu Liu, Yuchen Jiang, Ryan Cotterell, Mrinmaya Sachan
{"title":"结构化Span选择器","authors":"Tianyu Liu, Yuchen Jiang, Ryan Cotterell, Mrinmaya Sachan","doi":"10.18653/v1/2022.naacl-main.189","DOIUrl":null,"url":null,"abstract":"Many natural language processing tasks, e.g., coreference resolution and semantic role labeling, require selecting text spans and making decisions about them. A typical approach to such tasks is to score all possible spans and greedily select spans for task-specific downstream processing. This approach, however, does not incorporate any inductive bias about what sort of spans ought to be selected, e.g., that selected spans tend to be syntactic constituents. In this paper, we propose a novel grammar-based structured span selection model which learns to make use of the partial span-level annotation provided for such problems. Compared to previous approaches, our approach gets rid of the heuristic greedy span selection scheme, allowing us to model the downstream task on an optimal set of spans. We evaluate our model on two popular span prediction tasks: coreference resolution and semantic role labeling; and show improvements on both.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Structured Span Selector\",\"authors\":\"Tianyu Liu, Yuchen Jiang, Ryan Cotterell, Mrinmaya Sachan\",\"doi\":\"10.18653/v1/2022.naacl-main.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many natural language processing tasks, e.g., coreference resolution and semantic role labeling, require selecting text spans and making decisions about them. A typical approach to such tasks is to score all possible spans and greedily select spans for task-specific downstream processing. This approach, however, does not incorporate any inductive bias about what sort of spans ought to be selected, e.g., that selected spans tend to be syntactic constituents. In this paper, we propose a novel grammar-based structured span selection model which learns to make use of the partial span-level annotation provided for such problems. Compared to previous approaches, our approach gets rid of the heuristic greedy span selection scheme, allowing us to model the downstream task on an optimal set of spans. We evaluate our model on two popular span prediction tasks: coreference resolution and semantic role labeling; and show improvements on both.\",\"PeriodicalId\":382084,\"journal\":{\"name\":\"North American Chapter of the Association for Computational Linguistics\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Chapter of the Association for Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.naacl-main.189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.naacl-main.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

许多自然语言处理任务,如共指解析和语义角色标记,都需要选择文本范围并对其进行决策。这类任务的典型方法是对所有可能的跨度进行评分,并为特定于任务的下游处理贪婪地选择跨度。然而,这种方法不包含任何关于应该选择哪种类型的跨度的归纳偏见,例如,所选择的跨度往往是语法成分。在本文中,我们提出了一种新的基于语法的结构化跨度选择模型,该模型学习利用为此类问题提供的部分跨度级别注释。与以前的方法相比,我们的方法摆脱了启发式贪婪跨度选择方案,允许我们在最优跨度集上对下游任务建模。我们在两种流行的跨度预测任务上对我们的模型进行了评估:共参照分解和语义角色标注;两方面都有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Structured Span Selector
Many natural language processing tasks, e.g., coreference resolution and semantic role labeling, require selecting text spans and making decisions about them. A typical approach to such tasks is to score all possible spans and greedily select spans for task-specific downstream processing. This approach, however, does not incorporate any inductive bias about what sort of spans ought to be selected, e.g., that selected spans tend to be syntactic constituents. In this paper, we propose a novel grammar-based structured span selection model which learns to make use of the partial span-level annotation provided for such problems. Compared to previous approaches, our approach gets rid of the heuristic greedy span selection scheme, allowing us to model the downstream task on an optimal set of spans. We evaluate our model on two popular span prediction tasks: coreference resolution and semantic role labeling; and show improvements on both.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信