平面、空间和n空间中欧拉不等式的改进

D. Veljan
{"title":"平面、空间和n空间中欧拉不等式的改进","authors":"D. Veljan","doi":"10.5592/co/ccd.2020.08","DOIUrl":null,"url":null,"abstract":"We improve Euler’s inequality R ≥ 2r, where R and r are triangle’s circumradius and inradius, respectively, and prove some consequences of it. We also show non-Euclidean version of this result. Next, we improve 3D analogue of Euler’s inequality for tetrahedra R ≥ 3r and discuss recursive way to improve analogues of Euler’s inequality for simplices. We end with some open problems, including possible CEEG (classical Euclidean elementary geometry) proof of Grace-Danielsson’s inequality d2 ≤ (R − 3r)(R + r), where d is the distance between the centers of the insphere and the circumsphere of a tetrahedron.","PeriodicalId":253304,"journal":{"name":"Proceedings of the 3rd Croatian Combinatorial Days","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Refinements of Euler's inequalities in plane, space and n-space\",\"authors\":\"D. Veljan\",\"doi\":\"10.5592/co/ccd.2020.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We improve Euler’s inequality R ≥ 2r, where R and r are triangle’s circumradius and inradius, respectively, and prove some consequences of it. We also show non-Euclidean version of this result. Next, we improve 3D analogue of Euler’s inequality for tetrahedra R ≥ 3r and discuss recursive way to improve analogues of Euler’s inequality for simplices. We end with some open problems, including possible CEEG (classical Euclidean elementary geometry) proof of Grace-Danielsson’s inequality d2 ≤ (R − 3r)(R + r), where d is the distance between the centers of the insphere and the circumsphere of a tetrahedron.\",\"PeriodicalId\":253304,\"journal\":{\"name\":\"Proceedings of the 3rd Croatian Combinatorial Days\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd Croatian Combinatorial Days\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5592/co/ccd.2020.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Croatian Combinatorial Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5592/co/ccd.2020.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们改进了欧拉不等式R≥2r,其中R和R分别是三角形的外半径和内半径,并证明了它的一些结果。我们也给出了这个结果的非欧几里得版本。接下来,我们改进了四面体R≥3r时欧拉不等式的三维类似性,并讨论了简化体时欧拉不等式类似性的递归改进方法。最后,我们讨论了一些开放问题,包括经典欧几里得初等几何对Grace-Danielsson不等式d2≤(R - 3r)(R + R)的可能证明,其中d是四面体的内球中心与圆周中心之间的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refinements of Euler's inequalities in plane, space and n-space
We improve Euler’s inequality R ≥ 2r, where R and r are triangle’s circumradius and inradius, respectively, and prove some consequences of it. We also show non-Euclidean version of this result. Next, we improve 3D analogue of Euler’s inequality for tetrahedra R ≥ 3r and discuss recursive way to improve analogues of Euler’s inequality for simplices. We end with some open problems, including possible CEEG (classical Euclidean elementary geometry) proof of Grace-Danielsson’s inequality d2 ≤ (R − 3r)(R + r), where d is the distance between the centers of the insphere and the circumsphere of a tetrahedron.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信