一种快速语义分割的轻量级网络

Ruiqi Luo, Yuanzhouhan Cao, Yi Jin, Yidong Li
{"title":"一种快速语义分割的轻量级网络","authors":"Ruiqi Luo, Yuanzhouhan Cao, Yi Jin, Yidong Li","doi":"10.1109/BESC51023.2020.9348326","DOIUrl":null,"url":null,"abstract":"Semantic segmentation is a fundamental task in computer vision and is widely used in industry. However, current state-of-the-art architectures usually bring heavy computation complexity, making it hard to meet the demand for real-time, and can not be implemented in industry. In this paper, we propose a lightweight network to complete fast segmentation. Our network follows encoder-decoder style, which encodes rich spatial information at shallow layers and gains sufficient semantic information at deep layers. At the decoder part, we use attention mechanism to re-weight features and gradually fuse high-level features back to low-level features. We evaluate our network on Cityscapes dataset. Our method achieves an accuracy of 68.0 % mean intersection over union, and runs at 50.7 frames per second at full resolution (1024x2048) on one NVIDIA GeForce GTX 1080Ti card.","PeriodicalId":224502,"journal":{"name":"2020 7th International Conference on Behavioural and Social Computing (BESC)","volume":"472 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Network for Fast Semantic Segmentation\",\"authors\":\"Ruiqi Luo, Yuanzhouhan Cao, Yi Jin, Yidong Li\",\"doi\":\"10.1109/BESC51023.2020.9348326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation is a fundamental task in computer vision and is widely used in industry. However, current state-of-the-art architectures usually bring heavy computation complexity, making it hard to meet the demand for real-time, and can not be implemented in industry. In this paper, we propose a lightweight network to complete fast segmentation. Our network follows encoder-decoder style, which encodes rich spatial information at shallow layers and gains sufficient semantic information at deep layers. At the decoder part, we use attention mechanism to re-weight features and gradually fuse high-level features back to low-level features. We evaluate our network on Cityscapes dataset. Our method achieves an accuracy of 68.0 % mean intersection over union, and runs at 50.7 frames per second at full resolution (1024x2048) on one NVIDIA GeForce GTX 1080Ti card.\",\"PeriodicalId\":224502,\"journal\":{\"name\":\"2020 7th International Conference on Behavioural and Social Computing (BESC)\",\"volume\":\"472 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Conference on Behavioural and Social Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC51023.2020.9348326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Behavioural and Social Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC51023.2020.9348326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语义分割是计算机视觉的一项基本任务,在工业中有着广泛的应用。然而,目前的先进架构通常带来巨大的计算复杂度,难以满足实时性的需求,无法在工业中实现。在本文中,我们提出了一个轻量级的网络来完成快速分割。我们的网络采用编码器-解码器的方式,在浅层编码丰富的空间信息,在深层获得足够的语义信息。在解码器部分,我们使用注意机制对特征进行重新加权,并逐步将高级特征融合回低级特征。我们在cityscape数据集上评估我们的网络。我们的方法在NVIDIA GeForce GTX 1080Ti卡上以全分辨率(1024x2048)的50.7帧/秒的速度运行,实现了68.0%的平均交叉集精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lightweight Network for Fast Semantic Segmentation
Semantic segmentation is a fundamental task in computer vision and is widely used in industry. However, current state-of-the-art architectures usually bring heavy computation complexity, making it hard to meet the demand for real-time, and can not be implemented in industry. In this paper, we propose a lightweight network to complete fast segmentation. Our network follows encoder-decoder style, which encodes rich spatial information at shallow layers and gains sufficient semantic information at deep layers. At the decoder part, we use attention mechanism to re-weight features and gradually fuse high-level features back to low-level features. We evaluate our network on Cityscapes dataset. Our method achieves an accuracy of 68.0 % mean intersection over union, and runs at 50.7 frames per second at full resolution (1024x2048) on one NVIDIA GeForce GTX 1080Ti card.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信