基于机器学习的非常规储层特征数据增强方法——利用微地震数据和EDFM

J. Leines-Artieda, M. Fiallos-Torres, Amena Alharthi, S. Mahmoud, Abdullah Al Hashmi, Maryam Alqaydi, T. Ramsay, Yiwen Gong, Wei Yu, J. Miao, Alvaro Escorcia, Franklin Useche, Aamer Al Bannay, R. Fonseca, K. Sepehrnoori
{"title":"基于机器学习的非常规储层特征数据增强方法——利用微地震数据和EDFM","authors":"J. Leines-Artieda, M. Fiallos-Torres, Amena Alharthi, S. Mahmoud, Abdullah Al Hashmi, Maryam Alqaydi, T. Ramsay, Yiwen Gong, Wei Yu, J. Miao, Alvaro Escorcia, Franklin Useche, Aamer Al Bannay, R. Fonseca, K. Sepehrnoori","doi":"10.2118/210989-ms","DOIUrl":null,"url":null,"abstract":"\n Multi-stage hydraulic fracturing has recently gained strong interest in unconventional plays in the Middle East due to high natural gas production potential. However, prevalent characteristics of the area, including high-pressure / high-temperature (HPHT) conditions and presence of complex natural fracture networks, pose significant challenges to reservoir characterization. These challenges have motivated the development of an integrated workflow using microseismic data for the characterization of reservoir properties resulting from the interaction between natural and hydraulic fractures.\n This study proposes a reliable method for modeling hydraulic fractures from scarce microseismic data. Initially, a microseismic model—based on field records of microseismic data and natural fracture spatial characterization—was developed. Issues related to limited microseismic data availability were tackled through combination of a probabilistic algorithm, Gaussian Mixture Model, and a DFN model. Then, the resulting synthetic microseismic events enabled the generation of a hydraulic fracture model using the embedded discrete fracture model (EDFM) and an in-house microseismic spatial density algorithm that captured major hydraulic fracture growth tendencies. Next, the created hydraulic fracture geometries were validated against a physics-based hydraulic fracture propagation model. Lastly, a single-well sector model—based on a corner point grid that honored the original 3D discrete fracture network (DFN)—was history matched, confirming the successful application of the proposed methodology.","PeriodicalId":249690,"journal":{"name":"Day 2 Tue, November 01, 2022","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning-Based Data Augmentation Approach for Unconventional Reservoir Characterization Using Microseismic Data and EDFM\",\"authors\":\"J. Leines-Artieda, M. Fiallos-Torres, Amena Alharthi, S. Mahmoud, Abdullah Al Hashmi, Maryam Alqaydi, T. Ramsay, Yiwen Gong, Wei Yu, J. Miao, Alvaro Escorcia, Franklin Useche, Aamer Al Bannay, R. Fonseca, K. Sepehrnoori\",\"doi\":\"10.2118/210989-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Multi-stage hydraulic fracturing has recently gained strong interest in unconventional plays in the Middle East due to high natural gas production potential. However, prevalent characteristics of the area, including high-pressure / high-temperature (HPHT) conditions and presence of complex natural fracture networks, pose significant challenges to reservoir characterization. These challenges have motivated the development of an integrated workflow using microseismic data for the characterization of reservoir properties resulting from the interaction between natural and hydraulic fractures.\\n This study proposes a reliable method for modeling hydraulic fractures from scarce microseismic data. Initially, a microseismic model—based on field records of microseismic data and natural fracture spatial characterization—was developed. Issues related to limited microseismic data availability were tackled through combination of a probabilistic algorithm, Gaussian Mixture Model, and a DFN model. Then, the resulting synthetic microseismic events enabled the generation of a hydraulic fracture model using the embedded discrete fracture model (EDFM) and an in-house microseismic spatial density algorithm that captured major hydraulic fracture growth tendencies. Next, the created hydraulic fracture geometries were validated against a physics-based hydraulic fracture propagation model. Lastly, a single-well sector model—based on a corner point grid that honored the original 3D discrete fracture network (DFN)—was history matched, confirming the successful application of the proposed methodology.\",\"PeriodicalId\":249690,\"journal\":{\"name\":\"Day 2 Tue, November 01, 2022\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, November 01, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/210989-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 01, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/210989-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于具有较高的天然气生产潜力,多级水力压裂技术最近在中东非常规地区引起了人们的强烈兴趣。然而,该地区的普遍特征,包括高压/高温(HPHT)条件和复杂的天然裂缝网络的存在,给储层表征带来了重大挑战。这些挑战促使开发了一种集成工作流程,利用微地震数据来表征天然裂缝和水力裂缝之间相互作用产生的储层性质。本研究提出了一种利用稀缺的微地震数据进行水力裂缝建模的可靠方法。首先,基于微地震数据的现场记录和天然裂缝空间特征,开发了一个微地震模型。通过结合概率算法、高斯混合模型和DFN模型,解决了与有限微地震数据可用性相关的问题。然后,合成微地震事件可以使用嵌入式离散裂缝模型(EDFM)和内部微地震空间密度算法生成水力裂缝模型,该算法可以捕获主要水力裂缝的生长趋势。接下来,根据基于物理的水力裂缝扩展模型验证所创建的水力裂缝几何形状。最后,基于角点网格的单井分段模型与原始的3D离散裂缝网络(DFN)进行了历史匹配,证实了该方法的成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning-Based Data Augmentation Approach for Unconventional Reservoir Characterization Using Microseismic Data and EDFM
Multi-stage hydraulic fracturing has recently gained strong interest in unconventional plays in the Middle East due to high natural gas production potential. However, prevalent characteristics of the area, including high-pressure / high-temperature (HPHT) conditions and presence of complex natural fracture networks, pose significant challenges to reservoir characterization. These challenges have motivated the development of an integrated workflow using microseismic data for the characterization of reservoir properties resulting from the interaction between natural and hydraulic fractures. This study proposes a reliable method for modeling hydraulic fractures from scarce microseismic data. Initially, a microseismic model—based on field records of microseismic data and natural fracture spatial characterization—was developed. Issues related to limited microseismic data availability were tackled through combination of a probabilistic algorithm, Gaussian Mixture Model, and a DFN model. Then, the resulting synthetic microseismic events enabled the generation of a hydraulic fracture model using the embedded discrete fracture model (EDFM) and an in-house microseismic spatial density algorithm that captured major hydraulic fracture growth tendencies. Next, the created hydraulic fracture geometries were validated against a physics-based hydraulic fracture propagation model. Lastly, a single-well sector model—based on a corner point grid that honored the original 3D discrete fracture network (DFN)—was history matched, confirming the successful application of the proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信