基于分析仪成像重建的快速共轭梯度算法扩展

Oriol Caudevilla, J. Brankov
{"title":"基于分析仪成像重建的快速共轭梯度算法扩展","authors":"Oriol Caudevilla, J. Brankov","doi":"10.1117/12.2217164","DOIUrl":null,"url":null,"abstract":"This paper presents an extension of the classic Conjugate Gradient Algorithm. Motivated by the Analyzer-Based Imaging inverse problem, the novel method maximizes the Poisson regularized log-likelihood with a non-linear transformation of parameter faster than other solutions. The new approach takes advantage of the special properties of the Poisson log-likelihood to conjugate each ascend direction with respect all the previous directions taken by the algorithm. Our solution is compared with the general solution for non-quadratic unconstrained problems: the Polak- Ribiere formula. Both methods are applied to the ABI reconstruction problem.","PeriodicalId":228011,"journal":{"name":"SPIE Medical Imaging","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast conjugate gradient algorithm extension for analyzer-based imaging reconstruction\",\"authors\":\"Oriol Caudevilla, J. Brankov\",\"doi\":\"10.1117/12.2217164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an extension of the classic Conjugate Gradient Algorithm. Motivated by the Analyzer-Based Imaging inverse problem, the novel method maximizes the Poisson regularized log-likelihood with a non-linear transformation of parameter faster than other solutions. The new approach takes advantage of the special properties of the Poisson log-likelihood to conjugate each ascend direction with respect all the previous directions taken by the algorithm. Our solution is compared with the general solution for non-quadratic unconstrained problems: the Polak- Ribiere formula. Both methods are applied to the ABI reconstruction problem.\",\"PeriodicalId\":228011,\"journal\":{\"name\":\"SPIE Medical Imaging\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Medical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2217164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Medical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2217164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了经典共轭梯度算法的推广。该方法以基于分析仪的成像反问题为动力,通过参数的非线性变换实现泊松正则化对数似然的最大化,比其他方法更快。该方法利用泊松对数似然的特殊性质,将每个上升方向与之前算法所取的所有方向进行共轭。我们的解与非二次型无约束问题的一般解Polak- Ribiere公式进行了比较。这两种方法都应用于ABI重构问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast conjugate gradient algorithm extension for analyzer-based imaging reconstruction
This paper presents an extension of the classic Conjugate Gradient Algorithm. Motivated by the Analyzer-Based Imaging inverse problem, the novel method maximizes the Poisson regularized log-likelihood with a non-linear transformation of parameter faster than other solutions. The new approach takes advantage of the special properties of the Poisson log-likelihood to conjugate each ascend direction with respect all the previous directions taken by the algorithm. Our solution is compared with the general solution for non-quadratic unconstrained problems: the Polak- Ribiere formula. Both methods are applied to the ABI reconstruction problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信