移动边缘计算节能任务卸载与资源调度

Hongyan Yu, Quyuan Wang, Songtao Guo
{"title":"移动边缘计算节能任务卸载与资源调度","authors":"Hongyan Yu, Quyuan Wang, Songtao Guo","doi":"10.1109/NAS.2018.8515731","DOIUrl":null,"url":null,"abstract":"Mobile edge computing is an emerging computing paradigm to augment computational capabilities of mobile devices by offloading computation-intensive tasks from resource- constrained smart mobile device onto edge clouds nearby with potential computation capability. However, in general, edge clouds have limited computation resource and energy. Thus it is critical to achieve high energy efficiency while ensuring satisfactory user experience. In this paper, we first formulate the computation offloading problem for mobile edge computing into the system cost minimization problem by taking into account the completion time and energy. We then transform the optimization problem into a convex problem and propose a distributed algorithm consisting of offloading strategy selection, clock frequency configuration, transmission power allocation and channel rate scheduling. Finally, the experimental results show that our algorithm can achieve energy-efficient offloading performance compared to other existing algorithms.","PeriodicalId":115970,"journal":{"name":"2018 IEEE International Conference on Networking, Architecture and Storage (NAS)","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Energy-Efficient Task Offloading and Resource Scheduling for Mobile Edge Computing\",\"authors\":\"Hongyan Yu, Quyuan Wang, Songtao Guo\",\"doi\":\"10.1109/NAS.2018.8515731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile edge computing is an emerging computing paradigm to augment computational capabilities of mobile devices by offloading computation-intensive tasks from resource- constrained smart mobile device onto edge clouds nearby with potential computation capability. However, in general, edge clouds have limited computation resource and energy. Thus it is critical to achieve high energy efficiency while ensuring satisfactory user experience. In this paper, we first formulate the computation offloading problem for mobile edge computing into the system cost minimization problem by taking into account the completion time and energy. We then transform the optimization problem into a convex problem and propose a distributed algorithm consisting of offloading strategy selection, clock frequency configuration, transmission power allocation and channel rate scheduling. Finally, the experimental results show that our algorithm can achieve energy-efficient offloading performance compared to other existing algorithms.\",\"PeriodicalId\":115970,\"journal\":{\"name\":\"2018 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAS.2018.8515731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Networking, Architecture and Storage (NAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAS.2018.8515731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

移动边缘计算是一种新兴的计算范式,通过将计算密集型任务从资源受限的智能移动设备上卸载到具有潜在计算能力的边缘云上来增强移动设备的计算能力。但是,一般来说,边缘云的计算资源和能量是有限的。因此,在确保满意的用户体验的同时实现高能效是至关重要的。本文首先将移动边缘计算的计算卸载问题转化为考虑完成时间和能量的系统成本最小化问题。然后将优化问题转化为一个凸问题,提出了一种由卸载策略选择、时钟频率配置、传输功率分配和信道速率调度组成的分布式算法。最后,实验结果表明,与其他现有算法相比,我们的算法可以实现节能的卸载性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient Task Offloading and Resource Scheduling for Mobile Edge Computing
Mobile edge computing is an emerging computing paradigm to augment computational capabilities of mobile devices by offloading computation-intensive tasks from resource- constrained smart mobile device onto edge clouds nearby with potential computation capability. However, in general, edge clouds have limited computation resource and energy. Thus it is critical to achieve high energy efficiency while ensuring satisfactory user experience. In this paper, we first formulate the computation offloading problem for mobile edge computing into the system cost minimization problem by taking into account the completion time and energy. We then transform the optimization problem into a convex problem and propose a distributed algorithm consisting of offloading strategy selection, clock frequency configuration, transmission power allocation and channel rate scheduling. Finally, the experimental results show that our algorithm can achieve energy-efficient offloading performance compared to other existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信