S. D. Franceschi, L. Hutin, R. Maurand, L. Bourdet, H. Bohuslavskyi, A. Corna, D. Kotekar-Patil, S. Barraud, X. Jehl, Y. Niquet, M. Sanquer, M. Vinet
{"title":"量子信息处理的SOI技术","authors":"S. D. Franceschi, L. Hutin, R. Maurand, L. Bourdet, H. Bohuslavskyi, A. Corna, D. Kotekar-Patil, S. Barraud, X. Jehl, Y. Niquet, M. Sanquer, M. Vinet","doi":"10.1109/IEDM.2016.7838409","DOIUrl":null,"url":null,"abstract":"We present recent progress towards the implementation of a scalable quantum processor based on fully-depleted silicon-on-insulator (FDSOI) technology. In particular, we discuss an approach where the elementary bits of quantum information — so-called qubits — are encoded in the spin degree of freedom of gate-confined holes in p-type devices. We show how a hole-spin can be efficiently manipulated by means of a microwave excitation applied to the corresponding confining gate. The hole spin state can be read out and reinitialized through a Pauli blockade mechanism. The studied devices are derived from silicon nanowire field-effect transistors. We discuss their prospects for scalability and, more broadly, the potential advantages of FDSOI technology.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"SOI technology for quantum information processing\",\"authors\":\"S. D. Franceschi, L. Hutin, R. Maurand, L. Bourdet, H. Bohuslavskyi, A. Corna, D. Kotekar-Patil, S. Barraud, X. Jehl, Y. Niquet, M. Sanquer, M. Vinet\",\"doi\":\"10.1109/IEDM.2016.7838409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present recent progress towards the implementation of a scalable quantum processor based on fully-depleted silicon-on-insulator (FDSOI) technology. In particular, we discuss an approach where the elementary bits of quantum information — so-called qubits — are encoded in the spin degree of freedom of gate-confined holes in p-type devices. We show how a hole-spin can be efficiently manipulated by means of a microwave excitation applied to the corresponding confining gate. The hole spin state can be read out and reinitialized through a Pauli blockade mechanism. The studied devices are derived from silicon nanowire field-effect transistors. We discuss their prospects for scalability and, more broadly, the potential advantages of FDSOI technology.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present recent progress towards the implementation of a scalable quantum processor based on fully-depleted silicon-on-insulator (FDSOI) technology. In particular, we discuss an approach where the elementary bits of quantum information — so-called qubits — are encoded in the spin degree of freedom of gate-confined holes in p-type devices. We show how a hole-spin can be efficiently manipulated by means of a microwave excitation applied to the corresponding confining gate. The hole spin state can be read out and reinitialized through a Pauli blockade mechanism. The studied devices are derived from silicon nanowire field-effect transistors. We discuss their prospects for scalability and, more broadly, the potential advantages of FDSOI technology.