{"title":"基于双层超像素分组的图像分割","authors":"M. Yang","doi":"10.1109/ACPR.2013.62","DOIUrl":null,"url":null,"abstract":"The task of image segmentation is to group image pixels into visually meaningful objects. It has long been a challenging problem in computer vision and image processing. In this paper we address the segmentation as a super pixel grouping problem. We propose a novel graph-based segmentation framework which is able to integrate different cues from bilayer super pixels simultaneously. The key idea is that segmentation is formulated as grouping a subset of super pixels that partitions a bilayer graph over super pixels, with graph edges encoding super pixel similarity. We first construct a bipartite graph incorporating super pixel cue and long-range cue. Furthermore, mid-range cue is also incorporated in a hybrid graph model. Segmentation is solved by spectral clustering. Our approach is fully automatic, bottom-up, and unsupervised. We evaluate our proposed framework by comparing it to other generic segmentation approaches on the state-of-the-art benchmark database.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image Segmentation by Bilayer Superpixel Grouping\",\"authors\":\"M. Yang\",\"doi\":\"10.1109/ACPR.2013.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of image segmentation is to group image pixels into visually meaningful objects. It has long been a challenging problem in computer vision and image processing. In this paper we address the segmentation as a super pixel grouping problem. We propose a novel graph-based segmentation framework which is able to integrate different cues from bilayer super pixels simultaneously. The key idea is that segmentation is formulated as grouping a subset of super pixels that partitions a bilayer graph over super pixels, with graph edges encoding super pixel similarity. We first construct a bipartite graph incorporating super pixel cue and long-range cue. Furthermore, mid-range cue is also incorporated in a hybrid graph model. Segmentation is solved by spectral clustering. Our approach is fully automatic, bottom-up, and unsupervised. We evaluate our proposed framework by comparing it to other generic segmentation approaches on the state-of-the-art benchmark database.\",\"PeriodicalId\":365633,\"journal\":{\"name\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2013.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The task of image segmentation is to group image pixels into visually meaningful objects. It has long been a challenging problem in computer vision and image processing. In this paper we address the segmentation as a super pixel grouping problem. We propose a novel graph-based segmentation framework which is able to integrate different cues from bilayer super pixels simultaneously. The key idea is that segmentation is formulated as grouping a subset of super pixels that partitions a bilayer graph over super pixels, with graph edges encoding super pixel similarity. We first construct a bipartite graph incorporating super pixel cue and long-range cue. Furthermore, mid-range cue is also incorporated in a hybrid graph model. Segmentation is solved by spectral clustering. Our approach is fully automatic, bottom-up, and unsupervised. We evaluate our proposed framework by comparing it to other generic segmentation approaches on the state-of-the-art benchmark database.