{"title":"通过形状聚类突破运动非刚性结构的极限","authors":"Huizhong Deng, Yuchao Dai","doi":"10.1109/ICASSP.2016.7472027","DOIUrl":null,"url":null,"abstract":"Recovering both camera motions and non-rigid 3D shapes from 2D feature tracks is a challenging problem in computer vision. Long-term, complex non-rigid shape variations in real world videos further increase the difficulty for Non-rigid structure-from-motion (NRSfM). Furthermore, there does not exist a criterion to characterize the possibility in recovering the non-rigid shapes and camera motions (i.e., how easy or how difficult the problem could be). In this paper, we first present an analysis to the \"reconstructability\" measure for NRSfM, where we show that 3D shape complexity and camera motion complexity can be used to index the re-constructability. We propose an iterative shape clustering based method to NRSfM, which alternates between 3D shape clustering and 3D shape reconstruction. Thus, the global reconstructability has been improved and better reconstruction can be achieved. Experimental results on long-term, complex non-rigid motion sequences show that our method outperforms the current state-of-the-art methods by a margin.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pushing the limit of non-rigid structure-from-motion by shape clustering\",\"authors\":\"Huizhong Deng, Yuchao Dai\",\"doi\":\"10.1109/ICASSP.2016.7472027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recovering both camera motions and non-rigid 3D shapes from 2D feature tracks is a challenging problem in computer vision. Long-term, complex non-rigid shape variations in real world videos further increase the difficulty for Non-rigid structure-from-motion (NRSfM). Furthermore, there does not exist a criterion to characterize the possibility in recovering the non-rigid shapes and camera motions (i.e., how easy or how difficult the problem could be). In this paper, we first present an analysis to the \\\"reconstructability\\\" measure for NRSfM, where we show that 3D shape complexity and camera motion complexity can be used to index the re-constructability. We propose an iterative shape clustering based method to NRSfM, which alternates between 3D shape clustering and 3D shape reconstruction. Thus, the global reconstructability has been improved and better reconstruction can be achieved. Experimental results on long-term, complex non-rigid motion sequences show that our method outperforms the current state-of-the-art methods by a margin.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pushing the limit of non-rigid structure-from-motion by shape clustering
Recovering both camera motions and non-rigid 3D shapes from 2D feature tracks is a challenging problem in computer vision. Long-term, complex non-rigid shape variations in real world videos further increase the difficulty for Non-rigid structure-from-motion (NRSfM). Furthermore, there does not exist a criterion to characterize the possibility in recovering the non-rigid shapes and camera motions (i.e., how easy or how difficult the problem could be). In this paper, we first present an analysis to the "reconstructability" measure for NRSfM, where we show that 3D shape complexity and camera motion complexity can be used to index the re-constructability. We propose an iterative shape clustering based method to NRSfM, which alternates between 3D shape clustering and 3D shape reconstruction. Thus, the global reconstructability has been improved and better reconstruction can be achieved. Experimental results on long-term, complex non-rigid motion sequences show that our method outperforms the current state-of-the-art methods by a margin.