直纹曲面沿类空间曲线的演化

Gu¨l UG˘ UR Kaymanli, Cumali Ekici
{"title":"直纹曲面沿类空间曲线的演化","authors":"Gu¨l UG˘ UR Kaymanli, Cumali Ekici","doi":"10.52280/pujm.2022.540401","DOIUrl":null,"url":null,"abstract":"In this paper, we work on the ruled surfaces obtained by a\nquasi normal and quasi binormal vectors along a spacelike space curve in\nthree dimensional Minkowski space. Time evolution equations depending\non quasi curvatures are obtained. Studying directional evolutions of both\nquasi normal and quasi binormal ruled surfaces by using their directrices,\nwe investigate some geometric properties such as inextensibilty, developability,\nflatness and minimality of these ruled surfaces.","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutions of the Ruled Surfaces along a Spacelike Space Curve\",\"authors\":\"Gu¨l UG˘ UR Kaymanli, Cumali Ekici\",\"doi\":\"10.52280/pujm.2022.540401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we work on the ruled surfaces obtained by a\\nquasi normal and quasi binormal vectors along a spacelike space curve in\\nthree dimensional Minkowski space. Time evolution equations depending\\non quasi curvatures are obtained. Studying directional evolutions of both\\nquasi normal and quasi binormal ruled surfaces by using their directrices,\\nwe investigate some geometric properties such as inextensibilty, developability,\\nflatness and minimality of these ruled surfaces.\",\"PeriodicalId\":205373,\"journal\":{\"name\":\"Punjab University Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Punjab University Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52280/pujm.2022.540401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2022.540401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在三维闵可夫斯基空间中由拟法向量和拟二法向量沿类空间曲线得到的直纹曲面。得到了基于准曲率的时间演化方程。研究了拟法线和拟二法线直纹曲面的方向演化,探讨了这些直纹曲面的不可扩展性、可展开性、平坦性和极小性等几何性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutions of the Ruled Surfaces along a Spacelike Space Curve
In this paper, we work on the ruled surfaces obtained by a quasi normal and quasi binormal vectors along a spacelike space curve in three dimensional Minkowski space. Time evolution equations depending on quasi curvatures are obtained. Studying directional evolutions of both quasi normal and quasi binormal ruled surfaces by using their directrices, we investigate some geometric properties such as inextensibilty, developability, flatness and minimality of these ruled surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信