Zoltán Nagy, Michael Fluckiger, Raymond Oung, Ioannis K. Kaliakatsos, E. Hawkes, B. Nelson, K. Harada, E. Susilo, A. Menciassi, P. Dario, J. Abbott
{"title":"装配可重构腔内手术系统:机遇与挑战","authors":"Zoltán Nagy, Michael Fluckiger, Raymond Oung, Ioannis K. Kaliakatsos, E. Hawkes, B. Nelson, K. Harada, E. Susilo, A. Menciassi, P. Dario, J. Abbott","doi":"10.1504/IJBBR.2009.030054","DOIUrl":null,"url":null,"abstract":"The success of capsule endoscopy has promoted the development of the next generation of endoluminal surgical devices, and many research groups have proposed robotic capsules with novel functionalities, such as active locomotion and surgical intervention capabilities. Yet, these capsules are still single robotic units with a limited number of components and degrees of freedom. This paper addresses this inherent limitation of single capsule units by introducing the concept of modular robotics for surgical robotics. In the proposed procedure, the modules are ingested and assembled in the stomach cavity. We report on the key technologies of such a system: its self-assembly, actuation, power, and localisation.","PeriodicalId":375470,"journal":{"name":"International Journal of Biomechatronics and Biomedical Robotics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Assembling reconfigurable endoluminal surgical systems: opportunities and challenges\",\"authors\":\"Zoltán Nagy, Michael Fluckiger, Raymond Oung, Ioannis K. Kaliakatsos, E. Hawkes, B. Nelson, K. Harada, E. Susilo, A. Menciassi, P. Dario, J. Abbott\",\"doi\":\"10.1504/IJBBR.2009.030054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The success of capsule endoscopy has promoted the development of the next generation of endoluminal surgical devices, and many research groups have proposed robotic capsules with novel functionalities, such as active locomotion and surgical intervention capabilities. Yet, these capsules are still single robotic units with a limited number of components and degrees of freedom. This paper addresses this inherent limitation of single capsule units by introducing the concept of modular robotics for surgical robotics. In the proposed procedure, the modules are ingested and assembled in the stomach cavity. We report on the key technologies of such a system: its self-assembly, actuation, power, and localisation.\",\"PeriodicalId\":375470,\"journal\":{\"name\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBBR.2009.030054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomechatronics and Biomedical Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBBR.2009.030054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assembling reconfigurable endoluminal surgical systems: opportunities and challenges
The success of capsule endoscopy has promoted the development of the next generation of endoluminal surgical devices, and many research groups have proposed robotic capsules with novel functionalities, such as active locomotion and surgical intervention capabilities. Yet, these capsules are still single robotic units with a limited number of components and degrees of freedom. This paper addresses this inherent limitation of single capsule units by introducing the concept of modular robotics for surgical robotics. In the proposed procedure, the modules are ingested and assembled in the stomach cavity. We report on the key technologies of such a system: its self-assembly, actuation, power, and localisation.