{"title":"基于RFR和SVM的VLC室内定位","authors":"Affan Affan, H. M. Asif, N. Tarhuni","doi":"10.1109/WTS202356685.2023.10131742","DOIUrl":null,"url":null,"abstract":"Artificial intelligence algorithms require large datasets for better performance for all kinds of tasks such as classification and regression. In this paper, we explore the potential of the Random Forest Regression (RFR) algorithm and Support Vector Machine (SVM) algorithm with minimum features, such as signal power and its variants, for Visible Light Communication (VLC) based indoor positioning. We explore the performance of the RFR algorithm and SVM by using variations of the received signal power to increase the accuracy and reduce the computation complexity. The simulation results demonstrate that both techniques have estimated the location with high accuracy, however, RFR outperforms SVM in terms of mean error.","PeriodicalId":405032,"journal":{"name":"2023 Wireless Telecommunications Symposium (WTS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VLC Indoor Positioning Using RFR and SVM Reduced Features Machine Learning Techniques\",\"authors\":\"Affan Affan, H. M. Asif, N. Tarhuni\",\"doi\":\"10.1109/WTS202356685.2023.10131742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence algorithms require large datasets for better performance for all kinds of tasks such as classification and regression. In this paper, we explore the potential of the Random Forest Regression (RFR) algorithm and Support Vector Machine (SVM) algorithm with minimum features, such as signal power and its variants, for Visible Light Communication (VLC) based indoor positioning. We explore the performance of the RFR algorithm and SVM by using variations of the received signal power to increase the accuracy and reduce the computation complexity. The simulation results demonstrate that both techniques have estimated the location with high accuracy, however, RFR outperforms SVM in terms of mean error.\",\"PeriodicalId\":405032,\"journal\":{\"name\":\"2023 Wireless Telecommunications Symposium (WTS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Wireless Telecommunications Symposium (WTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WTS202356685.2023.10131742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Wireless Telecommunications Symposium (WTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WTS202356685.2023.10131742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VLC Indoor Positioning Using RFR and SVM Reduced Features Machine Learning Techniques
Artificial intelligence algorithms require large datasets for better performance for all kinds of tasks such as classification and regression. In this paper, we explore the potential of the Random Forest Regression (RFR) algorithm and Support Vector Machine (SVM) algorithm with minimum features, such as signal power and its variants, for Visible Light Communication (VLC) based indoor positioning. We explore the performance of the RFR algorithm and SVM by using variations of the received signal power to increase the accuracy and reduce the computation complexity. The simulation results demonstrate that both techniques have estimated the location with high accuracy, however, RFR outperforms SVM in terms of mean error.