可测试超图性质的表征

Felix Joos, Jaehoon Kim, Daniela Kühn, Deryk Osthus
{"title":"可测试超图性质的表征","authors":"Felix Joos, Jaehoon Kim, Daniela Kühn, Deryk Osthus","doi":"10.1109/FOCS.2017.84","DOIUrl":null,"url":null,"abstract":"We provide a combinatorial characterization of all testable properties of k-graphs (i.e. k-uniform hypergraphs). Here, a k-graph property P is testable if there is a randomized algorithm which makes a bounded number of edge queries and distinguishes with probability 2/3 between k-graphs that satisfy P and those that are far from satisfying P. For the 2-graph case, such a combinatorial characterization was obtained by Alon, Fischer, Newman and Shapira. Our results for the k-graph setting are in contrast to those of Austin and Tao, who showed that for the somewhat stronger concept of local repairability, the testability results for graphs do not extend to the 3-graph setting.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Characterization of Testable Hypergraph Properties\",\"authors\":\"Felix Joos, Jaehoon Kim, Daniela Kühn, Deryk Osthus\",\"doi\":\"10.1109/FOCS.2017.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a combinatorial characterization of all testable properties of k-graphs (i.e. k-uniform hypergraphs). Here, a k-graph property P is testable if there is a randomized algorithm which makes a bounded number of edge queries and distinguishes with probability 2/3 between k-graphs that satisfy P and those that are far from satisfying P. For the 2-graph case, such a combinatorial characterization was obtained by Alon, Fischer, Newman and Shapira. Our results for the k-graph setting are in contrast to those of Austin and Tao, who showed that for the somewhat stronger concept of local repairability, the testability results for graphs do not extend to the 3-graph setting.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提供了k-图(即k-一致超图)的所有可测试性质的组合表征。这里,如果存在一种随机算法,该算法进行有限数量的边查询,并以2/3的概率区分满足P的k图和远远不满足P的k图,则k图性质P是可测试的。对于2图情况,Alon, Fischer, Newman和Shapira获得了这样的组合表征。我们对k图设置的结果与Austin和Tao的结果相反,他们表明,对于更强的局部可修复性概念,图的可测试性结果不能扩展到3图设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Characterization of Testable Hypergraph Properties
We provide a combinatorial characterization of all testable properties of k-graphs (i.e. k-uniform hypergraphs). Here, a k-graph property P is testable if there is a randomized algorithm which makes a bounded number of edge queries and distinguishes with probability 2/3 between k-graphs that satisfy P and those that are far from satisfying P. For the 2-graph case, such a combinatorial characterization was obtained by Alon, Fischer, Newman and Shapira. Our results for the k-graph setting are in contrast to those of Austin and Tao, who showed that for the somewhat stronger concept of local repairability, the testability results for graphs do not extend to the 3-graph setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信