Felix Joos, Jaehoon Kim, Daniela Kühn, Deryk Osthus
{"title":"可测试超图性质的表征","authors":"Felix Joos, Jaehoon Kim, Daniela Kühn, Deryk Osthus","doi":"10.1109/FOCS.2017.84","DOIUrl":null,"url":null,"abstract":"We provide a combinatorial characterization of all testable properties of k-graphs (i.e. k-uniform hypergraphs). Here, a k-graph property P is testable if there is a randomized algorithm which makes a bounded number of edge queries and distinguishes with probability 2/3 between k-graphs that satisfy P and those that are far from satisfying P. For the 2-graph case, such a combinatorial characterization was obtained by Alon, Fischer, Newman and Shapira. Our results for the k-graph setting are in contrast to those of Austin and Tao, who showed that for the somewhat stronger concept of local repairability, the testability results for graphs do not extend to the 3-graph setting.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Characterization of Testable Hypergraph Properties\",\"authors\":\"Felix Joos, Jaehoon Kim, Daniela Kühn, Deryk Osthus\",\"doi\":\"10.1109/FOCS.2017.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a combinatorial characterization of all testable properties of k-graphs (i.e. k-uniform hypergraphs). Here, a k-graph property P is testable if there is a randomized algorithm which makes a bounded number of edge queries and distinguishes with probability 2/3 between k-graphs that satisfy P and those that are far from satisfying P. For the 2-graph case, such a combinatorial characterization was obtained by Alon, Fischer, Newman and Shapira. Our results for the k-graph setting are in contrast to those of Austin and Tao, who showed that for the somewhat stronger concept of local repairability, the testability results for graphs do not extend to the 3-graph setting.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Characterization of Testable Hypergraph Properties
We provide a combinatorial characterization of all testable properties of k-graphs (i.e. k-uniform hypergraphs). Here, a k-graph property P is testable if there is a randomized algorithm which makes a bounded number of edge queries and distinguishes with probability 2/3 between k-graphs that satisfy P and those that are far from satisfying P. For the 2-graph case, such a combinatorial characterization was obtained by Alon, Fischer, Newman and Shapira. Our results for the k-graph setting are in contrast to those of Austin and Tao, who showed that for the somewhat stronger concept of local repairability, the testability results for graphs do not extend to the 3-graph setting.