{"title":"基于概率进化算法的多机器人学习策略","authors":"Jiancong Fan, Yongquan Liang, Jiuhong Ruan","doi":"10.1109/WCICA.2010.5555034","DOIUrl":null,"url":null,"abstract":"Estimation of distribution algorithm (EDA) is a new evolutionary computation method based on probabilistic theory. EDA can select optimal individuals through estimating probability distribution function of a population. The capture problem among multi software robots can be solved by EDA. The capture problem involves that some pursuers pursue several evaders through part of trajectory. The trajectory was produced by the evaders during their two-dimensional random mobility. The pursuers estimate the evaders' mobility functions and adjust their pursuit models to capture the evaders as fast as possible. The probabilistic evolutionary courses of multi-robot experiencing some competitions are analyzed in performances. The analysis shows that capture problem of multi-robot solved by EDA is better than other methods in several aspects.","PeriodicalId":315420,"journal":{"name":"2010 8th World Congress on Intelligent Control and Automation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A learning strategy for multi-robot based on probabilistic evolutionary algorithm\",\"authors\":\"Jiancong Fan, Yongquan Liang, Jiuhong Ruan\",\"doi\":\"10.1109/WCICA.2010.5555034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of distribution algorithm (EDA) is a new evolutionary computation method based on probabilistic theory. EDA can select optimal individuals through estimating probability distribution function of a population. The capture problem among multi software robots can be solved by EDA. The capture problem involves that some pursuers pursue several evaders through part of trajectory. The trajectory was produced by the evaders during their two-dimensional random mobility. The pursuers estimate the evaders' mobility functions and adjust their pursuit models to capture the evaders as fast as possible. The probabilistic evolutionary courses of multi-robot experiencing some competitions are analyzed in performances. The analysis shows that capture problem of multi-robot solved by EDA is better than other methods in several aspects.\",\"PeriodicalId\":315420,\"journal\":{\"name\":\"2010 8th World Congress on Intelligent Control and Automation\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 8th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2010.5555034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 8th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2010.5555034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A learning strategy for multi-robot based on probabilistic evolutionary algorithm
Estimation of distribution algorithm (EDA) is a new evolutionary computation method based on probabilistic theory. EDA can select optimal individuals through estimating probability distribution function of a population. The capture problem among multi software robots can be solved by EDA. The capture problem involves that some pursuers pursue several evaders through part of trajectory. The trajectory was produced by the evaders during their two-dimensional random mobility. The pursuers estimate the evaders' mobility functions and adjust their pursuit models to capture the evaders as fast as possible. The probabilistic evolutionary courses of multi-robot experiencing some competitions are analyzed in performances. The analysis shows that capture problem of multi-robot solved by EDA is better than other methods in several aspects.