J. L. Storck, Bjarte Alexander Feldmann, Y. Kyosev
{"title":"用于自动钩针织物的设计工具","authors":"J. L. Storck, Bjarte Alexander Feldmann, Y. Kyosev","doi":"10.25367/cdatp.2023.4.p254-272","DOIUrl":null,"url":null,"abstract":"In the context of developing a machine to automatically crochet fabrics, a suitable design tool tailored to the new technology and enabling its application is crucial. The paper offers first insights into the prototype of the crochet machine and presents the approach of such a design tool implemented in Python for creating, modeling and generating the machine instructions. With a graphical user interface (GUI), a flat crocheted fabric can be designed by arranging international crochet symbols for slip stitch (SL), single crochet (SC) and half double crochet (HDC). Built-in error checking mechanisms, following the rules of crochet and the machine’s constraints, will aid inexperienced crocheters in this process. Based on the resulting computer representation as an array containing short strings for the respective stitches, a topology-based 3D model at the meso scale is automatically created as a preview of the designed crocheted fabric. Also, machine instructions to automatically crochet the fabric with the crochet machine prototype are generated by mapping the computer representation of the stitches to macros of G-code and appending them in a valid order. The straightforward design tool shows the capabilities of the crochet machine and is extensible for further enhancements. Through modeling, the structure of the machine-crocheted fabrics is presented for the first time. In comparison to manually crocheted fabrics, the machine-crocheted ones exhibit a technical front and back, since stitches are formed by the machine only from one side.","PeriodicalId":106695,"journal":{"name":"Communications in Development and Assembling of Textile Products","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design tool for automated crocheting of fabrics\",\"authors\":\"J. L. Storck, Bjarte Alexander Feldmann, Y. Kyosev\",\"doi\":\"10.25367/cdatp.2023.4.p254-272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of developing a machine to automatically crochet fabrics, a suitable design tool tailored to the new technology and enabling its application is crucial. The paper offers first insights into the prototype of the crochet machine and presents the approach of such a design tool implemented in Python for creating, modeling and generating the machine instructions. With a graphical user interface (GUI), a flat crocheted fabric can be designed by arranging international crochet symbols for slip stitch (SL), single crochet (SC) and half double crochet (HDC). Built-in error checking mechanisms, following the rules of crochet and the machine’s constraints, will aid inexperienced crocheters in this process. Based on the resulting computer representation as an array containing short strings for the respective stitches, a topology-based 3D model at the meso scale is automatically created as a preview of the designed crocheted fabric. Also, machine instructions to automatically crochet the fabric with the crochet machine prototype are generated by mapping the computer representation of the stitches to macros of G-code and appending them in a valid order. The straightforward design tool shows the capabilities of the crochet machine and is extensible for further enhancements. Through modeling, the structure of the machine-crocheted fabrics is presented for the first time. In comparison to manually crocheted fabrics, the machine-crocheted ones exhibit a technical front and back, since stitches are formed by the machine only from one side.\",\"PeriodicalId\":106695,\"journal\":{\"name\":\"Communications in Development and Assembling of Textile Products\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Development and Assembling of Textile Products\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25367/cdatp.2023.4.p254-272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Development and Assembling of Textile Products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25367/cdatp.2023.4.p254-272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the context of developing a machine to automatically crochet fabrics, a suitable design tool tailored to the new technology and enabling its application is crucial. The paper offers first insights into the prototype of the crochet machine and presents the approach of such a design tool implemented in Python for creating, modeling and generating the machine instructions. With a graphical user interface (GUI), a flat crocheted fabric can be designed by arranging international crochet symbols for slip stitch (SL), single crochet (SC) and half double crochet (HDC). Built-in error checking mechanisms, following the rules of crochet and the machine’s constraints, will aid inexperienced crocheters in this process. Based on the resulting computer representation as an array containing short strings for the respective stitches, a topology-based 3D model at the meso scale is automatically created as a preview of the designed crocheted fabric. Also, machine instructions to automatically crochet the fabric with the crochet machine prototype are generated by mapping the computer representation of the stitches to macros of G-code and appending them in a valid order. The straightforward design tool shows the capabilities of the crochet machine and is extensible for further enhancements. Through modeling, the structure of the machine-crocheted fabrics is presented for the first time. In comparison to manually crocheted fabrics, the machine-crocheted ones exhibit a technical front and back, since stitches are formed by the machine only from one side.