利用稀疏性计算马尔可夫决策过程的单调策略

V. Krishnamurthy, C. Rojas, B. Wahlberg
{"title":"利用稀疏性计算马尔可夫决策过程的单调策略","authors":"V. Krishnamurthy, C. Rojas, B. Wahlberg","doi":"10.1109/AUCC.2013.6697239","DOIUrl":null,"url":null,"abstract":"This paper considers Markov decision processes whose optimal policy is a randomized mixture of monotone increasing policies. Such monotone policies have an inherent sparsity structure. We present a two-stage convex optimization algorithm for computing the optimal policy that exploits the sparsity. It combines an alternating direction method of multipliers (ADMM) to solve a linear programming problem with respect to the joint action state probabilities, together with a subgradient step that promotes the monotone sparsity pattern in the conditional probabilities of the action given the state. In the second step, sum-of-norms regularization is used to stress the monotone structure of the optimal policy.","PeriodicalId":177490,"journal":{"name":"2013 Australian Control Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Computing monotone policies for Markov decision processes by exploiting sparsity\",\"authors\":\"V. Krishnamurthy, C. Rojas, B. Wahlberg\",\"doi\":\"10.1109/AUCC.2013.6697239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers Markov decision processes whose optimal policy is a randomized mixture of monotone increasing policies. Such monotone policies have an inherent sparsity structure. We present a two-stage convex optimization algorithm for computing the optimal policy that exploits the sparsity. It combines an alternating direction method of multipliers (ADMM) to solve a linear programming problem with respect to the joint action state probabilities, together with a subgradient step that promotes the monotone sparsity pattern in the conditional probabilities of the action given the state. In the second step, sum-of-norms regularization is used to stress the monotone structure of the optimal policy.\",\"PeriodicalId\":177490,\"journal\":{\"name\":\"2013 Australian Control Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Australian Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUCC.2013.6697239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Australian Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUCC.2013.6697239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文考虑马尔可夫决策过程,其最优策略是单调递增策略的随机混合。这种单调策略具有固有的稀疏性结构。我们提出了一种利用稀疏性计算最优策略的两阶段凸优化算法。它结合了交替方向乘法器(ADMM)来解决关于联合动作状态概率的线性规划问题,并结合了在给定状态的动作的条件概率中促进单调稀疏模式的子梯度步进。在第二步中,使用规范和正则化来强调最优策略的单调结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing monotone policies for Markov decision processes by exploiting sparsity
This paper considers Markov decision processes whose optimal policy is a randomized mixture of monotone increasing policies. Such monotone policies have an inherent sparsity structure. We present a two-stage convex optimization algorithm for computing the optimal policy that exploits the sparsity. It combines an alternating direction method of multipliers (ADMM) to solve a linear programming problem with respect to the joint action state probabilities, together with a subgradient step that promotes the monotone sparsity pattern in the conditional probabilities of the action given the state. In the second step, sum-of-norms regularization is used to stress the monotone structure of the optimal policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信