基于对话分割的邻接对经验验证

T. D. Midgley, S. Harrison, C. MacNish
{"title":"基于对话分割的邻接对经验验证","authors":"T. D. Midgley, S. Harrison, C. MacNish","doi":"10.3115/1654595.1654615","DOIUrl":null,"url":null,"abstract":"A problem in dialogue research is that of finding and managing expectations. Adjacency pair theory has widespread acceptance, but traditional classification features (in particular, 'previous-tag' type features) do not exploit this information optimally. We suggest a method of dialogue segmentation that verifies adjacency pairs and allows us to use dialogue-level information within the entire segment and not just the previous utterance. We also use the X2 test for statistical significance as 'noise reduction' to refine a list of pairs. Together, these methods can be used to extend expectation beyond the traditional classification features.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Empirical Verification of Adjacency Pairs Using Dialogue Segmentation\",\"authors\":\"T. D. Midgley, S. Harrison, C. MacNish\",\"doi\":\"10.3115/1654595.1654615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A problem in dialogue research is that of finding and managing expectations. Adjacency pair theory has widespread acceptance, but traditional classification features (in particular, 'previous-tag' type features) do not exploit this information optimally. We suggest a method of dialogue segmentation that verifies adjacency pairs and allows us to use dialogue-level information within the entire segment and not just the previous utterance. We also use the X2 test for statistical significance as 'noise reduction' to refine a list of pairs. Together, these methods can be used to extend expectation beyond the traditional classification features.\",\"PeriodicalId\":426429,\"journal\":{\"name\":\"SIGDIAL Workshop\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGDIAL Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1654595.1654615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1654595.1654615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

对话研究中的一个问题是发现和管理期望。邻接对理论已被广泛接受,但传统的分类特征(特别是“前标签”类型特征)不能最优地利用这些信息。我们提出了一种对话分割方法,该方法验证邻接对,并允许我们在整个片段中使用对话级信息,而不仅仅是之前的话语。我们还使用X2检验统计显著性作为“降噪”来完善配对列表。总之,这些方法可以用来扩展期望,超越传统的分类特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Verification of Adjacency Pairs Using Dialogue Segmentation
A problem in dialogue research is that of finding and managing expectations. Adjacency pair theory has widespread acceptance, but traditional classification features (in particular, 'previous-tag' type features) do not exploit this information optimally. We suggest a method of dialogue segmentation that verifies adjacency pairs and allows us to use dialogue-level information within the entire segment and not just the previous utterance. We also use the X2 test for statistical significance as 'noise reduction' to refine a list of pairs. Together, these methods can be used to extend expectation beyond the traditional classification features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信