S. Dinç, R. S. Aygün, F. Fahimi
{"title":"GPU Based Robust Image Registration for Composite Translational, Rotational and Scale Transformations","authors":"S. Dinç, R. S. Aygün, F. Fahimi","doi":"10.1109/ISM.2015.51","DOIUrl":null,"url":null,"abstract":"This paper presents a GPU based image registration algorithm that utilizes Hough Transform and Least Square Optimization to calculate the transformation between two images. In our approach, we calculate the transformation parameters of all possible combination solutions of matched feature points by exploiting parallel processing power of the GPU. We applied our algorithm on a variety of images including the problem of mosaic image generation. Experimental results show that our method is robust to the outliers (incorrect matches) and it can achieve very accurate registration (numeric and visual) results with much faster (up to 20 times) than CPU implementation.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于GPU的图像配准算法,该算法利用霍夫变换和最小二乘优化来计算两幅图像之间的变换。在我们的方法中,我们利用GPU的并行处理能力计算匹配特征点的所有可能组合解的变换参数。我们将该算法应用于多种图像,包括马赛克图像生成问题。实验结果表明,我们的方法对异常值(不正确匹配)具有鲁棒性,并且可以以比CPU实现更快(高达20倍)的速度获得非常准确的配准(数字和视觉)结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU Based Robust Image Registration for Composite Translational, Rotational and Scale Transformations
This paper presents a GPU based image registration algorithm that utilizes Hough Transform and Least Square Optimization to calculate the transformation between two images. In our approach, we calculate the transformation parameters of all possible combination solutions of matched feature points by exploiting parallel processing power of the GPU. We applied our algorithm on a variety of images including the problem of mosaic image generation. Experimental results show that our method is robust to the outliers (incorrect matches) and it can achieve very accurate registration (numeric and visual) results with much faster (up to 20 times) than CPU implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信