热压法制备绿色聚合物电解质

Kamlesh Pandey
{"title":"热压法制备绿色聚合物电解质","authors":"Kamlesh Pandey","doi":"10.30564/ESE.V1I1.594","DOIUrl":null,"url":null,"abstract":"To develop the green polymeric membrane electrolyte, e-Polycaprolactone (PCL) was used as a host and the Ionic liquid (IL)(1-Ethyl-3-methylimidazolium tosylate) as a dopant. The IL is a source of mobile charges in the polymer electrolyte system. The composite membrane has been prepared by Hot Press method and then we characterised this membrane for ionic transportation. Formation of nanocomposite system has been ascertained from their XRD pattern. Interaction phenomenon was studied by ATR based FTIR and Laser Raman spectroscopic technique. Variation of conductivity with composition and temperature was studied with the aid of impedance spectroscopy data.","PeriodicalId":375676,"journal":{"name":"Electrical Science & Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Green Polymer Electrolyte Through Hot Press Method\",\"authors\":\"Kamlesh Pandey\",\"doi\":\"10.30564/ESE.V1I1.594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To develop the green polymeric membrane electrolyte, e-Polycaprolactone (PCL) was used as a host and the Ionic liquid (IL)(1-Ethyl-3-methylimidazolium tosylate) as a dopant. The IL is a source of mobile charges in the polymer electrolyte system. The composite membrane has been prepared by Hot Press method and then we characterised this membrane for ionic transportation. Formation of nanocomposite system has been ascertained from their XRD pattern. Interaction phenomenon was studied by ATR based FTIR and Laser Raman spectroscopic technique. Variation of conductivity with composition and temperature was studied with the aid of impedance spectroscopy data.\",\"PeriodicalId\":375676,\"journal\":{\"name\":\"Electrical Science & Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/ESE.V1I1.594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/ESE.V1I1.594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以e-聚己内酯(PCL)为主体,离子液体(IL)(1-乙基-3-甲基咪唑甲酯)为掺杂剂,制备绿色聚合物膜电解质。IL是聚合物电解质体系中流动电荷的来源。采用热压法制备了复合膜,并对其离子传输特性进行了表征。通过XRD谱图确定了纳米复合体系的形成。利用基于ATR的FTIR和激光拉曼光谱技术研究了相互作用现象。利用阻抗谱数据研究了电导率随成分和温度的变化规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Green Polymer Electrolyte Through Hot Press Method
To develop the green polymeric membrane electrolyte, e-Polycaprolactone (PCL) was used as a host and the Ionic liquid (IL)(1-Ethyl-3-methylimidazolium tosylate) as a dopant. The IL is a source of mobile charges in the polymer electrolyte system. The composite membrane has been prepared by Hot Press method and then we characterised this membrane for ionic transportation. Formation of nanocomposite system has been ascertained from their XRD pattern. Interaction phenomenon was studied by ATR based FTIR and Laser Raman spectroscopic technique. Variation of conductivity with composition and temperature was studied with the aid of impedance spectroscopy data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信