{"title":"具有级联多维关注的场景文本检测","authors":"Shan Dai","doi":"10.1109/ICCECE58074.2023.10135187","DOIUrl":null,"url":null,"abstract":"Over the past years, scene text detection based on a segmentation network has progressed substantially due to its pixel-level description, which is more suitable for detecting long text and curved text. However, limited by the scale robustness and feature representation ability, most existing segmentation-based scene text detectors may need help to handle more complex forms of text, which is common in the real world. In this paper, to tackle this problem, we propose a cascaded module, termed CMAModule, based on the attention mechanism to improve the feature representation capability of the model, which integrates a series of the basic module to augment the feature map. Our proposed CMANet, obtained higher recall and precision on two benchmarks.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scene Text Detection with Cascaded Multidimensional Attention\",\"authors\":\"Shan Dai\",\"doi\":\"10.1109/ICCECE58074.2023.10135187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past years, scene text detection based on a segmentation network has progressed substantially due to its pixel-level description, which is more suitable for detecting long text and curved text. However, limited by the scale robustness and feature representation ability, most existing segmentation-based scene text detectors may need help to handle more complex forms of text, which is common in the real world. In this paper, to tackle this problem, we propose a cascaded module, termed CMAModule, based on the attention mechanism to improve the feature representation capability of the model, which integrates a series of the basic module to augment the feature map. Our proposed CMANet, obtained higher recall and precision on two benchmarks.\",\"PeriodicalId\":120030,\"journal\":{\"name\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE58074.2023.10135187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scene Text Detection with Cascaded Multidimensional Attention
Over the past years, scene text detection based on a segmentation network has progressed substantially due to its pixel-level description, which is more suitable for detecting long text and curved text. However, limited by the scale robustness and feature representation ability, most existing segmentation-based scene text detectors may need help to handle more complex forms of text, which is common in the real world. In this paper, to tackle this problem, we propose a cascaded module, termed CMAModule, based on the attention mechanism to improve the feature representation capability of the model, which integrates a series of the basic module to augment the feature map. Our proposed CMANet, obtained higher recall and precision on two benchmarks.