高应力隧道锚固后软弱围岩力学参数反演

宇 江
{"title":"高应力隧道锚固后软弱围岩力学参数反演","authors":"宇 江","doi":"10.56952/arma-2022-0695","DOIUrl":null,"url":null,"abstract":"This study investigates the performance of yielding bolt in a weak rock mass tunnel with high in-situ stress conditions. The genetic algorithm and the Komamura-Huang rheological model are combined to perform an inversion analysis of the mechanical parameters of the weak surrounding rock mass before and after implementing the anchoring system. The results based on an actual tunnel project suggest that the mechanical properties all enhanced in the anchoring tunnel section The elastic modulus of the surrounding rock increased by 45.7%, the cohesive force increased by 18.1%, and the friction angle increased by 2.92%. Hence, the yielding cable anchor can effectively prevent the squeezing deformation of the surrounding rock mass and improve the structural integrity of the tunnel lining. The performance of the anchoring system and the inversion process of the mechanical parameters can guide the design and construction of similar tunnel projects in weak rock mass configurationsKEYWORDS: yielding bolt, tunnel engineering, weak rock mass, parameter inversion, rheological model","PeriodicalId":418045,"journal":{"name":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The inversion of mechanical parameters of weak surrounding rock in high-stress tunnel after casting anchor\",\"authors\":\"宇 江\",\"doi\":\"10.56952/arma-2022-0695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the performance of yielding bolt in a weak rock mass tunnel with high in-situ stress conditions. The genetic algorithm and the Komamura-Huang rheological model are combined to perform an inversion analysis of the mechanical parameters of the weak surrounding rock mass before and after implementing the anchoring system. The results based on an actual tunnel project suggest that the mechanical properties all enhanced in the anchoring tunnel section The elastic modulus of the surrounding rock increased by 45.7%, the cohesive force increased by 18.1%, and the friction angle increased by 2.92%. Hence, the yielding cable anchor can effectively prevent the squeezing deformation of the surrounding rock mass and improve the structural integrity of the tunnel lining. The performance of the anchoring system and the inversion process of the mechanical parameters can guide the design and construction of similar tunnel projects in weak rock mass configurationsKEYWORDS: yielding bolt, tunnel engineering, weak rock mass, parameter inversion, rheological model\",\"PeriodicalId\":418045,\"journal\":{\"name\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56952/arma-2022-0695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56952/arma-2022-0695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了高地应力条件下弱岩体隧道屈服锚杆的受力性能。结合遗传算法和Komamura-Huang流变模型,对锚固系统实施前后软弱围岩的力学参数进行了反演分析。基于实际隧道工程的结果表明,锚固隧洞段围岩的力学性能均有所提高,围岩弹性模量提高了45.7%,黏结力提高了18.1%,摩擦角提高了2.92%。因此,屈服索锚杆可以有效地防止围岩的挤压变形,提高隧道衬砌的结构完整性。关键词:屈服锚杆,隧道工程,软弱岩体,参数反演,流变模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The inversion of mechanical parameters of weak surrounding rock in high-stress tunnel after casting anchor
This study investigates the performance of yielding bolt in a weak rock mass tunnel with high in-situ stress conditions. The genetic algorithm and the Komamura-Huang rheological model are combined to perform an inversion analysis of the mechanical parameters of the weak surrounding rock mass before and after implementing the anchoring system. The results based on an actual tunnel project suggest that the mechanical properties all enhanced in the anchoring tunnel section The elastic modulus of the surrounding rock increased by 45.7%, the cohesive force increased by 18.1%, and the friction angle increased by 2.92%. Hence, the yielding cable anchor can effectively prevent the squeezing deformation of the surrounding rock mass and improve the structural integrity of the tunnel lining. The performance of the anchoring system and the inversion process of the mechanical parameters can guide the design and construction of similar tunnel projects in weak rock mass configurationsKEYWORDS: yielding bolt, tunnel engineering, weak rock mass, parameter inversion, rheological model
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信