A. Prasetyo, Niechi Valentino, Muhammad Anwar Hadi
{"title":"Identifikasi Sebaran Spasial dan Kerapatan Mangrove Gili Lawang menggunakan Citra Landsat 9 OLI-2/TIRS-2","authors":"A. Prasetyo, Niechi Valentino, Muhammad Anwar Hadi","doi":"10.29303/jstl.v9i2.450","DOIUrl":null,"url":null,"abstract":"Mangrove ecosystems have a great influence on the sustainability of human life and the environment. The high level of vulnerability of mangrove ecosystems has implications for the importance of quality planning. This study aims to identify the spatial distribution and density of mangrove forests in Gili Lawang using Landsat 9 OLI-2/TIRS-2 satellite imagery. Data processing is done with the help of the QGIS 3.30 application. Data processing consists of band combinations, image classification with the SVM algorithm, classification results accuracy test, NDVI value extract, and reclass NDVI. The results showed that the use of band 564 in Landsat 9 imagery visually resulted in an increase in sharpness in identifying mangrove ecosystems. Classification of objects with the SVM algorithm has overall accuracy and kappa accuracy > 80%. The identified area of Gili Lawang is 432.72 ha, consisting of 37.89 ha of mangroves, 58.11 ha of non-mangrove and 3.75 ha of water bodies. NDVI values at the study sites ranged from 0.068 to 0.87. The maximum NDVI value is found in mangrove objects, while the minimum NDVI value is found in water body objects. Mangrove density in Gili Lawang is dominated by high and very high density. The use of Landsat 9 OLI-2/TIRS-2 imagery in the future is expected to provide positive benefits in providing data and information related to natural resources.\n ","PeriodicalId":274989,"journal":{"name":"JURNAL SAINS TEKNOLOGI & LINGKUNGAN","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL SAINS TEKNOLOGI & LINGKUNGAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/jstl.v9i2.450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

红树林生态系统对人类生活和环境的可持续性具有重大影响。红树林生态系统的高度脆弱性意味着质量规划的重要性。利用Landsat 9 OLI-2/TIRS-2卫星影像对吉利拉旺红树林的空间分布和密度进行了研究。数据处理在QGIS 3.30应用程序的帮助下完成。数据处理包括波段组合、SVM算法图像分类、分类结果精度检验、NDVI值提取、NDVI重分类。结果表明,在Landsat 9图像中使用波段564在视觉上增加了识别红树林生态系统的清晰度。使用SVM算法对目标进行分类,总体准确率和kappa准确率均> 80%。Gili Lawang的确定面积为432.72 ha,其中红树林37.89 ha,非红树林58.11 ha,水体3.75 ha。NDVI值在0.068 ~ 0.87之间。NDVI值最大的是红树林对象,最小的是水体对象。吉利拉旺红树林密度以高密度和超高密度为主。未来使用Landsat 9 OLI-2/TIRS-2图像预计将在提供与自然资源有关的数据和信息方面带来积极的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifikasi Sebaran Spasial dan Kerapatan Mangrove Gili Lawang menggunakan Citra Landsat 9 OLI-2/TIRS-2
Mangrove ecosystems have a great influence on the sustainability of human life and the environment. The high level of vulnerability of mangrove ecosystems has implications for the importance of quality planning. This study aims to identify the spatial distribution and density of mangrove forests in Gili Lawang using Landsat 9 OLI-2/TIRS-2 satellite imagery. Data processing is done with the help of the QGIS 3.30 application. Data processing consists of band combinations, image classification with the SVM algorithm, classification results accuracy test, NDVI value extract, and reclass NDVI. The results showed that the use of band 564 in Landsat 9 imagery visually resulted in an increase in sharpness in identifying mangrove ecosystems. Classification of objects with the SVM algorithm has overall accuracy and kappa accuracy > 80%. The identified area of Gili Lawang is 432.72 ha, consisting of 37.89 ha of mangroves, 58.11 ha of non-mangrove and 3.75 ha of water bodies. NDVI values at the study sites ranged from 0.068 to 0.87. The maximum NDVI value is found in mangrove objects, while the minimum NDVI value is found in water body objects. Mangrove density in Gili Lawang is dominated by high and very high density. The use of Landsat 9 OLI-2/TIRS-2 imagery in the future is expected to provide positive benefits in providing data and information related to natural resources.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信