一种便于双手抓取和搬运未知质量物体的共享远程操作接口

Davide Torielli, L. Muratore, A. Luca, N. Tsagarakis
{"title":"一种便于双手抓取和搬运未知质量物体的共享远程操作接口","authors":"Davide Torielli, L. Muratore, A. Luca, N. Tsagarakis","doi":"10.1109/Humanoids53995.2022.10000094","DOIUrl":null,"url":null,"abstract":"The teleoperation of robots with human-like capabilities may pose significant challenges to the human operator due to the kinematic complexity and redundancy of these robots. Bimanual telemanipulation represents such a challenging task that requires precise coordination of the two arms to perform a stable bimanual grasp on an object and eventually transport the object while maintaining the grasp. In this work, we present a shared control telemanipulation interface to facilitate the bimanual grasping and transportation of objects of unknown mass. With the proposed method, the robot is able to transport the object maintaining autonomously a sufficient amount of grasping force while accepting commands from the operator to reach the desired location. As humans do, it is not necessary to know the weight of the object in advance; instead, the robot estimates it during the lifting phase. On the basis of the estimated weight, the required amount of grasping force is computed. During object transportation, the robot autonomously regulates the grasping forces in a shared control fashion, allowing the operator to seamlessly command only the trajectories of the object. The proposed method has been implemented and validated on the CENTAURO robot, a quadrupedal platform with a humanoid dual arm upper body, performing experiment where objects of different weights and dimensions must be picked up and transported.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Shared Telemanipulation Interface to Facilitate Bimanual Grasping and Transportation of Objects of Unknown Mass\",\"authors\":\"Davide Torielli, L. Muratore, A. Luca, N. Tsagarakis\",\"doi\":\"10.1109/Humanoids53995.2022.10000094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The teleoperation of robots with human-like capabilities may pose significant challenges to the human operator due to the kinematic complexity and redundancy of these robots. Bimanual telemanipulation represents such a challenging task that requires precise coordination of the two arms to perform a stable bimanual grasp on an object and eventually transport the object while maintaining the grasp. In this work, we present a shared control telemanipulation interface to facilitate the bimanual grasping and transportation of objects of unknown mass. With the proposed method, the robot is able to transport the object maintaining autonomously a sufficient amount of grasping force while accepting commands from the operator to reach the desired location. As humans do, it is not necessary to know the weight of the object in advance; instead, the robot estimates it during the lifting phase. On the basis of the estimated weight, the required amount of grasping force is computed. During object transportation, the robot autonomously regulates the grasping forces in a shared control fashion, allowing the operator to seamlessly command only the trajectories of the object. The proposed method has been implemented and validated on the CENTAURO robot, a quadrupedal platform with a humanoid dual arm upper body, performing experiment where objects of different weights and dimensions must be picked up and transported.\",\"PeriodicalId\":180816,\"journal\":{\"name\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids53995.2022.10000094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于机器人的运动复杂性和冗余性,具有类人能力的机器人的远程操作可能对人类操作员构成重大挑战。双手遥控代表了这样一个具有挑战性的任务,需要两个手臂的精确协调,以执行一个稳定的双手抓取一个物体,并最终运输的对象,同时保持抓取。在这项工作中,我们提出了一个共享控制远程操作接口,以方便双手抓取和运输未知质量的物体。利用所提出的方法,机器人能够在接受操作员的指令到达期望位置的同时,自主地保持足够的抓取力来运输物体。和人类一样,它不需要事先知道物体的重量;相反,机器人在提升阶段估计它。在估计重量的基础上,计算出所需的抓握力。在物体运输过程中,机器人以共享控制方式自主调节抓取力,允许操作员无缝地指挥物体的轨迹。在人形双臂上半身四足平台CENTAURO机器人上进行了不同重量和尺寸物体的拾取和运输实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Shared Telemanipulation Interface to Facilitate Bimanual Grasping and Transportation of Objects of Unknown Mass
The teleoperation of robots with human-like capabilities may pose significant challenges to the human operator due to the kinematic complexity and redundancy of these robots. Bimanual telemanipulation represents such a challenging task that requires precise coordination of the two arms to perform a stable bimanual grasp on an object and eventually transport the object while maintaining the grasp. In this work, we present a shared control telemanipulation interface to facilitate the bimanual grasping and transportation of objects of unknown mass. With the proposed method, the robot is able to transport the object maintaining autonomously a sufficient amount of grasping force while accepting commands from the operator to reach the desired location. As humans do, it is not necessary to know the weight of the object in advance; instead, the robot estimates it during the lifting phase. On the basis of the estimated weight, the required amount of grasping force is computed. During object transportation, the robot autonomously regulates the grasping forces in a shared control fashion, allowing the operator to seamlessly command only the trajectories of the object. The proposed method has been implemented and validated on the CENTAURO robot, a quadrupedal platform with a humanoid dual arm upper body, performing experiment where objects of different weights and dimensions must be picked up and transported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信