基于机器学习方法的网络入侵系统综合性能评估

Shahzad Haroon, Syed Sajjad Hussain
{"title":"基于机器学习方法的网络入侵系统综合性能评估","authors":"Shahzad Haroon, Syed Sajjad Hussain","doi":"10.31645/jisrc-019-01","DOIUrl":null,"url":null,"abstract":"Over the last three decades, network devices are increasing due to technology like the Internet of Things (IoT) and Bring Your Own Device (BYOD). These rapidly increasing devices open many venues for network attacks whereas modern attacks are more sophisticated and complex to detect. To detect these attacks efficiently, we have used recently available dataset UNSW-NB15. UNSW-NB15 is developed according to the modern flow of network traffic with 49 features including 9 types of network attacks. To analyze the traffic pattern for the intrusion detection system(IDS), we have used multiple classifiers to test the accuracy. From the dataset UNSWNB15, we have used medium and strong correlated features. All the results from different classifiers are compared. Prominent results are achieved by ensemble bagged tree which classifies normal and individual attacks with an accuracy of 79%.","PeriodicalId":412730,"journal":{"name":"Journal of Independent Studies and Research Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Performance Evaluation Of Network Intrusion System Using Machine Learning Approach\",\"authors\":\"Shahzad Haroon, Syed Sajjad Hussain\",\"doi\":\"10.31645/jisrc-019-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last three decades, network devices are increasing due to technology like the Internet of Things (IoT) and Bring Your Own Device (BYOD). These rapidly increasing devices open many venues for network attacks whereas modern attacks are more sophisticated and complex to detect. To detect these attacks efficiently, we have used recently available dataset UNSW-NB15. UNSW-NB15 is developed according to the modern flow of network traffic with 49 features including 9 types of network attacks. To analyze the traffic pattern for the intrusion detection system(IDS), we have used multiple classifiers to test the accuracy. From the dataset UNSWNB15, we have used medium and strong correlated features. All the results from different classifiers are compared. Prominent results are achieved by ensemble bagged tree which classifies normal and individual attacks with an accuracy of 79%.\",\"PeriodicalId\":412730,\"journal\":{\"name\":\"Journal of Independent Studies and Research Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Independent Studies and Research Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31645/jisrc-019-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Independent Studies and Research Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31645/jisrc-019-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的三十年里,由于物联网(IoT)和自带设备(BYOD)等技术的发展,网络设备正在增加。这些快速增加的设备为网络攻击打开了许多场所,而现代攻击更复杂,更难以检测。为了有效检测这些攻击,我们使用了最近可用的数据集UNSW-NB15。UNSW-NB15是根据现代网络流量流程开发的,具有49个特征,包括9种网络攻击类型。为了分析入侵检测系统(IDS)的流量模式,我们使用了多个分类器来测试其准确性。从数据集UNSWNB15中,我们使用了中等和强相关特征。比较了不同分类器的分类结果。集成袋装树对正常攻击和个体攻击进行分类,准确率达到79%,取得了显著的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Performance Evaluation Of Network Intrusion System Using Machine Learning Approach
Over the last three decades, network devices are increasing due to technology like the Internet of Things (IoT) and Bring Your Own Device (BYOD). These rapidly increasing devices open many venues for network attacks whereas modern attacks are more sophisticated and complex to detect. To detect these attacks efficiently, we have used recently available dataset UNSW-NB15. UNSW-NB15 is developed according to the modern flow of network traffic with 49 features including 9 types of network attacks. To analyze the traffic pattern for the intrusion detection system(IDS), we have used multiple classifiers to test the accuracy. From the dataset UNSWNB15, we have used medium and strong correlated features. All the results from different classifiers are compared. Prominent results are achieved by ensemble bagged tree which classifies normal and individual attacks with an accuracy of 79%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信