使用嵌入式计算机和软件定义无线电的独立SAW传感器询问器

J. Humphries, D. R. Armstrong, A. Weeks, D. Malocha
{"title":"使用嵌入式计算机和软件定义无线电的独立SAW传感器询问器","authors":"J. Humphries, D. R. Armstrong, A. Weeks, D. Malocha","doi":"10.1109/WiSEE.2015.7392989","DOIUrl":null,"url":null,"abstract":"Modern software defined radio (SDR) technologies have enabled surface acoustic wave (SAW) sensor interrogation systems that are small, inexpensive, and fully integrated. The universal software radio peripheral (USRP) is available as a commercial-off-the-shelf (COTS) SDR that can be programmed to fit a wide variety of applications and needs. Recent work at the University of Central Florida has demonstrated the USRP B200 as a SAW sensor interrogator. This paper expands upon previous efforts by implementing a standalone interrogation platform which utilizes the USRP B200 and embedded microcomputer. Recent advances in embedded processing platforms have enabled full Linux environments to be run, enabling high performance computation in a compact package. One such embedded platform, the MinnowBoard MAX, has been employed to perform the complex matched filter correlator post processing techniques as well as handle programming and communication with the USRP. The unit is self contained and can be operated without a traditional Desktop or Laptop. Performance of the interrogator has also been improved by adding and external RF switch and amplifier. The system is demonstrated by interrogating orthogonal frequency coded (OFC) SAW sensors at 915MHz and extracting the sensor temperature.","PeriodicalId":284692,"journal":{"name":"2015 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Standalone SAW sensor interrogator using an embedded computer and software defined radio\",\"authors\":\"J. Humphries, D. R. Armstrong, A. Weeks, D. Malocha\",\"doi\":\"10.1109/WiSEE.2015.7392989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern software defined radio (SDR) technologies have enabled surface acoustic wave (SAW) sensor interrogation systems that are small, inexpensive, and fully integrated. The universal software radio peripheral (USRP) is available as a commercial-off-the-shelf (COTS) SDR that can be programmed to fit a wide variety of applications and needs. Recent work at the University of Central Florida has demonstrated the USRP B200 as a SAW sensor interrogator. This paper expands upon previous efforts by implementing a standalone interrogation platform which utilizes the USRP B200 and embedded microcomputer. Recent advances in embedded processing platforms have enabled full Linux environments to be run, enabling high performance computation in a compact package. One such embedded platform, the MinnowBoard MAX, has been employed to perform the complex matched filter correlator post processing techniques as well as handle programming and communication with the USRP. The unit is self contained and can be operated without a traditional Desktop or Laptop. Performance of the interrogator has also been improved by adding and external RF switch and amplifier. The system is demonstrated by interrogating orthogonal frequency coded (OFC) SAW sensors at 915MHz and extracting the sensor temperature.\",\"PeriodicalId\":284692,\"journal\":{\"name\":\"2015 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WiSEE.2015.7392989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiSEE.2015.7392989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

现代软件定义无线电(SDR)技术使得表面声波(SAW)传感器探测系统体积小、价格低廉且完全集成。通用软件无线电外设(USRP)是一种商用现货(COTS) SDR,可以编程以适应各种应用和需求。中佛罗里达大学最近的工作已经证明了USRP B200作为SAW传感器询问器。本文在前人的基础上,利用USRP B200和嵌入式微机实现了一个独立的讯问平台。嵌入式处理平台的最新进展使得可以运行完整的Linux环境,从而在一个紧凑的包中实现高性能计算。一个这样的嵌入式平台,MinnowBoard MAX,已经被用来执行复杂的匹配滤波器相关器后处理技术,以及处理编程和与USRP通信。该设备是独立的,无需传统的台式电脑或笔记本电脑即可操作。通过增加外接射频开关和放大器,提高了查询器的性能。通过询问915MHz正交频率编码(OFC) SAW传感器并提取传感器温度,对该系统进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standalone SAW sensor interrogator using an embedded computer and software defined radio
Modern software defined radio (SDR) technologies have enabled surface acoustic wave (SAW) sensor interrogation systems that are small, inexpensive, and fully integrated. The universal software radio peripheral (USRP) is available as a commercial-off-the-shelf (COTS) SDR that can be programmed to fit a wide variety of applications and needs. Recent work at the University of Central Florida has demonstrated the USRP B200 as a SAW sensor interrogator. This paper expands upon previous efforts by implementing a standalone interrogation platform which utilizes the USRP B200 and embedded microcomputer. Recent advances in embedded processing platforms have enabled full Linux environments to be run, enabling high performance computation in a compact package. One such embedded platform, the MinnowBoard MAX, has been employed to perform the complex matched filter correlator post processing techniques as well as handle programming and communication with the USRP. The unit is self contained and can be operated without a traditional Desktop or Laptop. Performance of the interrogator has also been improved by adding and external RF switch and amplifier. The system is demonstrated by interrogating orthogonal frequency coded (OFC) SAW sensors at 915MHz and extracting the sensor temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信