局部固有维数的估计

L. Amsaleg, Oussama Chelly, T. Furon, S. Girard, M. Houle, K. Kawarabayashi, Michael Nett
{"title":"局部固有维数的估计","authors":"L. Amsaleg, Oussama Chelly, T. Furon, S. Girard, M. Houle, K. Kawarabayashi, Michael Nett","doi":"10.1145/2783258.2783405","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the estimation of a local measure of intrinsic dimensionality (ID) recently proposed by Houle. The local model can be regarded as an extension of Karger and Ruhl's expansion dimension to a statistical setting in which the distribution of distances to a query point is modeled in terms of a continuous random variable. This form of intrinsic dimensionality can be particularly useful in search, classification, outlier detection, and other contexts in machine learning, databases, and data mining, as it has been shown to be equivalent to a measure of the discriminative power of similarity functions. Several estimators of local ID are proposed and analyzed based on extreme value theory, using maximum likelihood estimation (MLE), the method of moments (MoM), probability weighted moments (PWM), and regularly varying functions (RV). An experimental evaluation is also provided, using both real and artificial data.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"Estimating Local Intrinsic Dimensionality\",\"authors\":\"L. Amsaleg, Oussama Chelly, T. Furon, S. Girard, M. Houle, K. Kawarabayashi, Michael Nett\",\"doi\":\"10.1145/2783258.2783405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the estimation of a local measure of intrinsic dimensionality (ID) recently proposed by Houle. The local model can be regarded as an extension of Karger and Ruhl's expansion dimension to a statistical setting in which the distribution of distances to a query point is modeled in terms of a continuous random variable. This form of intrinsic dimensionality can be particularly useful in search, classification, outlier detection, and other contexts in machine learning, databases, and data mining, as it has been shown to be equivalent to a measure of the discriminative power of similarity functions. Several estimators of local ID are proposed and analyzed based on extreme value theory, using maximum likelihood estimation (MLE), the method of moments (MoM), probability weighted moments (PWM), and regularly varying functions (RV). An experimental evaluation is also provided, using both real and artificial data.\",\"PeriodicalId\":243428,\"journal\":{\"name\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2783258.2783405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

摘要

本文研究了Houle最近提出的一种固有维数局部测度的估计。局部模型可以看作是将ger和Ruhl展开维扩展到一个统计设置,其中查询点的距离分布是用一个连续的随机变量来建模的。这种形式的内在维数在搜索、分类、离群值检测以及机器学习、数据库和数据挖掘中的其他环境中特别有用,因为它已被证明相当于相似函数的判别能力的度量。基于极值理论,利用极大似然估计(MLE)、矩量法(MoM)、概率加权矩量法(PWM)和正则变函数法(RV),提出并分析了几种局部ID估计方法。用真实数据和人工数据进行了实验评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Local Intrinsic Dimensionality
This paper is concerned with the estimation of a local measure of intrinsic dimensionality (ID) recently proposed by Houle. The local model can be regarded as an extension of Karger and Ruhl's expansion dimension to a statistical setting in which the distribution of distances to a query point is modeled in terms of a continuous random variable. This form of intrinsic dimensionality can be particularly useful in search, classification, outlier detection, and other contexts in machine learning, databases, and data mining, as it has been shown to be equivalent to a measure of the discriminative power of similarity functions. Several estimators of local ID are proposed and analyzed based on extreme value theory, using maximum likelihood estimation (MLE), the method of moments (MoM), probability weighted moments (PWM), and regularly varying functions (RV). An experimental evaluation is also provided, using both real and artificial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信