Victor Chang, Oghara Akpomedaye, V. Jesus, Qi Xu, Karl Hall, Meghana Ganatra
{"title":"使用ARIMA和Fb-Prophet模型预测COVID-19大流行:英国案例研究","authors":"Victor Chang, Oghara Akpomedaye, V. Jesus, Qi Xu, Karl Hall, Meghana Ganatra","doi":"10.5220/0011990300003485","DOIUrl":null,"url":null,"abstract":"This study aims to provide insights into predicting future cases of COVID-19 infection and rates of virus transmission in the UK by critically analyzing and visualizing historical COVID-19 data, so that healthcare providers can prepare ahead of time. In order to achieve this goal, the study invested in the existing studies and selected ARIMA and Fb-Prophet time series models as the methods to predict confirmed and death cases in the following year. In a comparison of both models using values of their evaluation metrics, root-mean-square error, mean absolute error and mean absolute percentage error show that ARIMA performs better than Fb-Prophet. The study also discusses the reasons for the dramatic spike in mortality and the large drop in deaths shown in the results, contributing to the literature on health analytics and COVID-19 by validating the results of related studies. Copyright © 2023 by SCITEPRESS - Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)","PeriodicalId":414016,"journal":{"name":"International Conference on Complex Information Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting of COVID-19 Pandemic Using ARIMA and Fb-Prophet Models: UK Case Study\",\"authors\":\"Victor Chang, Oghara Akpomedaye, V. Jesus, Qi Xu, Karl Hall, Meghana Ganatra\",\"doi\":\"10.5220/0011990300003485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to provide insights into predicting future cases of COVID-19 infection and rates of virus transmission in the UK by critically analyzing and visualizing historical COVID-19 data, so that healthcare providers can prepare ahead of time. In order to achieve this goal, the study invested in the existing studies and selected ARIMA and Fb-Prophet time series models as the methods to predict confirmed and death cases in the following year. In a comparison of both models using values of their evaluation metrics, root-mean-square error, mean absolute error and mean absolute percentage error show that ARIMA performs better than Fb-Prophet. The study also discusses the reasons for the dramatic spike in mortality and the large drop in deaths shown in the results, contributing to the literature on health analytics and COVID-19 by validating the results of related studies. Copyright © 2023 by SCITEPRESS - Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)\",\"PeriodicalId\":414016,\"journal\":{\"name\":\"International Conference on Complex Information Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Complex Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011990300003485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Complex Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011990300003485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0