数据驱动非线性VRFT在伺服系统死区补偿中的应用

Cornel Bumb, M. Radac, R. Precup, Raul-Cristian Roman
{"title":"数据驱动非线性VRFT在伺服系统死区补偿中的应用","authors":"Cornel Bumb, M. Radac, R. Precup, Raul-Cristian Roman","doi":"10.1109/ICSTCC.2017.8107137","DOIUrl":null,"url":null,"abstract":"We propose herein a data-driven dead-zone (DZ) compensation strategy using a model-free Virtual Reference Feedback Tuning (VRFT) approach. The VRFT tuning scheme is accommodated for two controller structures: the first one which explicitly includes a model of the DZ inverse to be identified and the second one which uses a Neural Network (NN) to model the controller to be identified. The main question to be answered here is whether if the inclusion of an explicit model of a static nonlinearity (DZ in this case) can be avoided while preserving the control system performance. Thorough investigation case studies are carried out both in simulation and experiment on a laboratory 3D-crane system as a typical servo system control application.","PeriodicalId":374572,"journal":{"name":"2017 21st International Conference on System Theory, Control and Computing (ICSTCC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven nonlinear VRFT for dead-zone compensation in servo systems control\",\"authors\":\"Cornel Bumb, M. Radac, R. Precup, Raul-Cristian Roman\",\"doi\":\"10.1109/ICSTCC.2017.8107137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose herein a data-driven dead-zone (DZ) compensation strategy using a model-free Virtual Reference Feedback Tuning (VRFT) approach. The VRFT tuning scheme is accommodated for two controller structures: the first one which explicitly includes a model of the DZ inverse to be identified and the second one which uses a Neural Network (NN) to model the controller to be identified. The main question to be answered here is whether if the inclusion of an explicit model of a static nonlinearity (DZ in this case) can be avoided while preserving the control system performance. Thorough investigation case studies are carried out both in simulation and experiment on a laboratory 3D-crane system as a typical servo system control application.\",\"PeriodicalId\":374572,\"journal\":{\"name\":\"2017 21st International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 21st International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC.2017.8107137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2017.8107137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于无模型虚拟参考反馈调谐(VRFT)的数据驱动死区补偿策略。VRFT调谐方案适用于两种控制器结构:第一种结构明确包含待识别的DZ逆模型,第二种结构使用神经网络(NN)对待识别的控制器建模。这里要回答的主要问题是,在保持控制系统性能的同时,是否可以避免包含静态非线性的显式模型(在这种情况下为DZ)。以实验室三维起重机系统作为典型的伺服系统控制应用,进行了仿真和实验两方面的深入调查案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven nonlinear VRFT for dead-zone compensation in servo systems control
We propose herein a data-driven dead-zone (DZ) compensation strategy using a model-free Virtual Reference Feedback Tuning (VRFT) approach. The VRFT tuning scheme is accommodated for two controller structures: the first one which explicitly includes a model of the DZ inverse to be identified and the second one which uses a Neural Network (NN) to model the controller to be identified. The main question to be answered here is whether if the inclusion of an explicit model of a static nonlinearity (DZ in this case) can be avoided while preserving the control system performance. Thorough investigation case studies are carried out both in simulation and experiment on a laboratory 3D-crane system as a typical servo system control application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信