函数回归模型中预测期的弹性处理

Kyungmin Ahn, J. D. Tucker, Wei Wu, Anuj Srivastava
{"title":"函数回归模型中预测期的弹性处理","authors":"Kyungmin Ahn, J. D. Tucker, Wei Wu, Anuj Srivastava","doi":"10.1109/CVPRW.2018.00072","DOIUrl":null,"url":null,"abstract":"Functional variables serve important roles as predictors in a variety of pattern recognition and vision applications. Focusing on a specific subproblem, termed scalar-on-function regression, most current approaches adopt the standard L2 inner product to form a link between functional predictors and scalar responses. These methods may perform poorly when predictor functions contain nuisance phase variability, i.e., predictors are temporally misaligned due to noise. While a simple solution could be to prealign predictors as a pre-processing step, before applying a regression model, this alignment is seldom optimal from the perspective of regression. We propose a new approach, termed elastic functional regression, where alignment is included in the regression model itself, and is performed in conjunction with the estimation of other model parameters. This model is based on a norm-preserving warping of predictors, not the standard time warping of functions, and provides better prediction in situations where the shape or the amplitude of the predictor is more useful than its phase. We demonstrate the effectiveness of this framework using simulated and stock market data.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Elastic Handling of Predictor Phase in Functional Regression Models\",\"authors\":\"Kyungmin Ahn, J. D. Tucker, Wei Wu, Anuj Srivastava\",\"doi\":\"10.1109/CVPRW.2018.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional variables serve important roles as predictors in a variety of pattern recognition and vision applications. Focusing on a specific subproblem, termed scalar-on-function regression, most current approaches adopt the standard L2 inner product to form a link between functional predictors and scalar responses. These methods may perform poorly when predictor functions contain nuisance phase variability, i.e., predictors are temporally misaligned due to noise. While a simple solution could be to prealign predictors as a pre-processing step, before applying a regression model, this alignment is seldom optimal from the perspective of regression. We propose a new approach, termed elastic functional regression, where alignment is included in the regression model itself, and is performed in conjunction with the estimation of other model parameters. This model is based on a norm-preserving warping of predictors, not the standard time warping of functions, and provides better prediction in situations where the shape or the amplitude of the predictor is more useful than its phase. We demonstrate the effectiveness of this framework using simulated and stock market data.\",\"PeriodicalId\":150600,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2018.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在各种模式识别和视觉应用中,函数变量作为预测因子发挥着重要作用。专注于一个特定的子问题,称为标量对函数回归,目前的大多数方法采用标准的L2内积来形成函数预测和标量响应之间的联系。当预测函数包含讨厌的相位变异性时,这些方法可能表现不佳,即,由于噪声,预测器暂时不对齐。虽然一个简单的解决方案可能是在应用回归模型之前将预测因子作为预处理步骤进行预对齐,但从回归的角度来看,这种对齐很少是最佳的。我们提出了一种新的方法,称为弹性函数回归,其中对齐包含在回归模型本身中,并与其他模型参数的估计一起执行。该模型基于保持规范的预测器翘曲,而不是函数的标准时间翘曲,并且在预测器的形状或幅度比其相位更有用的情况下提供更好的预测。我们使用模拟和股票市场数据证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic Handling of Predictor Phase in Functional Regression Models
Functional variables serve important roles as predictors in a variety of pattern recognition and vision applications. Focusing on a specific subproblem, termed scalar-on-function regression, most current approaches adopt the standard L2 inner product to form a link between functional predictors and scalar responses. These methods may perform poorly when predictor functions contain nuisance phase variability, i.e., predictors are temporally misaligned due to noise. While a simple solution could be to prealign predictors as a pre-processing step, before applying a regression model, this alignment is seldom optimal from the perspective of regression. We propose a new approach, termed elastic functional regression, where alignment is included in the regression model itself, and is performed in conjunction with the estimation of other model parameters. This model is based on a norm-preserving warping of predictors, not the standard time warping of functions, and provides better prediction in situations where the shape or the amplitude of the predictor is more useful than its phase. We demonstrate the effectiveness of this framework using simulated and stock market data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信