Lucy Havens, B. Alex, Benjamin Bach, Melissa Mhairi Terras
{"title":"性别偏见注释中的不确定性和包容性:英国英语文本注释分类和注释数据集","authors":"Lucy Havens, B. Alex, Benjamin Bach, Melissa Mhairi Terras","doi":"10.18653/v1/2022.gebnlp-1.4","DOIUrl":null,"url":null,"abstract":"Mitigating harms from gender biased language in Natural Language Processing (NLP) systems remains a challenge, and the situated nature of language means bias is inescapable in NLP data. Though efforts to mitigate gender bias in NLP are numerous, they often vaguely define gender and bias, only consider two genders, and do not incorporate uncertainty into models. To address these limitations, in this paper we present a taxonomy of gender biased language and apply it to create annotated datasets. We created the taxonomy and annotated data with the aim of making gender bias in language transparent. If biases are communicated clearly, varieties of biased language can be better identified and measured. Our taxonomy contains eleven types of gender biases inclusive of people whose gender expressions do not fit into the binary conceptions of woman and man, and whose gender differs from that they were assigned at birth, while also allowing annotators to document unknown gender information. The taxonomy and annotated data will, in future work, underpin analysis and more equitable language model development.","PeriodicalId":161909,"journal":{"name":"Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uncertainty and Inclusivity in Gender Bias Annotation: An Annotation Taxonomy and Annotated Datasets of British English Text\",\"authors\":\"Lucy Havens, B. Alex, Benjamin Bach, Melissa Mhairi Terras\",\"doi\":\"10.18653/v1/2022.gebnlp-1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitigating harms from gender biased language in Natural Language Processing (NLP) systems remains a challenge, and the situated nature of language means bias is inescapable in NLP data. Though efforts to mitigate gender bias in NLP are numerous, they often vaguely define gender and bias, only consider two genders, and do not incorporate uncertainty into models. To address these limitations, in this paper we present a taxonomy of gender biased language and apply it to create annotated datasets. We created the taxonomy and annotated data with the aim of making gender bias in language transparent. If biases are communicated clearly, varieties of biased language can be better identified and measured. Our taxonomy contains eleven types of gender biases inclusive of people whose gender expressions do not fit into the binary conceptions of woman and man, and whose gender differs from that they were assigned at birth, while also allowing annotators to document unknown gender information. The taxonomy and annotated data will, in future work, underpin analysis and more equitable language model development.\",\"PeriodicalId\":161909,\"journal\":{\"name\":\"Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.gebnlp-1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.gebnlp-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncertainty and Inclusivity in Gender Bias Annotation: An Annotation Taxonomy and Annotated Datasets of British English Text
Mitigating harms from gender biased language in Natural Language Processing (NLP) systems remains a challenge, and the situated nature of language means bias is inescapable in NLP data. Though efforts to mitigate gender bias in NLP are numerous, they often vaguely define gender and bias, only consider two genders, and do not incorporate uncertainty into models. To address these limitations, in this paper we present a taxonomy of gender biased language and apply it to create annotated datasets. We created the taxonomy and annotated data with the aim of making gender bias in language transparent. If biases are communicated clearly, varieties of biased language can be better identified and measured. Our taxonomy contains eleven types of gender biases inclusive of people whose gender expressions do not fit into the binary conceptions of woman and man, and whose gender differs from that they were assigned at birth, while also allowing annotators to document unknown gender information. The taxonomy and annotated data will, in future work, underpin analysis and more equitable language model development.