地形启发式混合差分进化

Ane Élida Nogueira Frauches Almoaia, Wagner F. Sacco, A. Neto
{"title":"地形启发式混合差分进化","authors":"Ane Élida Nogueira Frauches Almoaia, Wagner F. Sacco, A. Neto","doi":"10.21528/lmln-vol17-no2-art4","DOIUrl":null,"url":null,"abstract":"In this article, we present a new hybrid differential evolution (DE) which employs a topographical heuristic introduced in the early nineties as part of a global optimization method. This heuristic is used to select individuals from the DE population in order to be starting points of instances of the Hooke–Jeeves algorithm. The solutions achieved in this phase are potential candidates for the next generation. The method, called TopoDE, is compared with other stochastic optimization algorithms using challenging benchmark problems. The results obtained are quite promising.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid differential evolution with the topographical heuristic\",\"authors\":\"Ane Élida Nogueira Frauches Almoaia, Wagner F. Sacco, A. Neto\",\"doi\":\"10.21528/lmln-vol17-no2-art4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a new hybrid differential evolution (DE) which employs a topographical heuristic introduced in the early nineties as part of a global optimization method. This heuristic is used to select individuals from the DE population in order to be starting points of instances of the Hooke–Jeeves algorithm. The solutions achieved in this phase are potential candidates for the next generation. The method, called TopoDE, is compared with other stochastic optimization algorithms using challenging benchmark problems. The results obtained are quite promising.\",\"PeriodicalId\":386768,\"journal\":{\"name\":\"Learning and Nonlinear Models\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning and Nonlinear Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21528/lmln-vol17-no2-art4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/lmln-vol17-no2-art4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种新的混合差分进化(DE),它采用了90年代初引入的地形启发式作为全局优化方法的一部分。这种启发式方法用于从DE总体中选择个体,以作为Hooke-Jeeves算法实例的起点。在此阶段实现的解决方案是下一代的潜在候选方案。该方法被称为TopoDE,使用具有挑战性的基准问题与其他随机优化算法进行比较。得到的结果是很有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid differential evolution with the topographical heuristic
In this article, we present a new hybrid differential evolution (DE) which employs a topographical heuristic introduced in the early nineties as part of a global optimization method. This heuristic is used to select individuals from the DE population in order to be starting points of instances of the Hooke–Jeeves algorithm. The solutions achieved in this phase are potential candidates for the next generation. The method, called TopoDE, is compared with other stochastic optimization algorithms using challenging benchmark problems. The results obtained are quite promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信