动态规划中的抛硬币几乎毫无用处

S. Jukna
{"title":"动态规划中的抛硬币几乎毫无用处","authors":"S. Jukna","doi":"10.1145/3397476","DOIUrl":null,"url":null,"abstract":"We consider probabilistic circuits working over the real numbers and using arbitrary semialgebraic functions of bounded description complexity as gates. In particular, such circuits can use all arithmetic operations (+, −, ×, ÷), optimization operations (min and max), conditional branching (if-then-else), and many more. We show that probabilistic circuits using any of these operations as gates can be simulated by deterministic circuits with only about a quadratical blowup in size. A slightly larger blowup in circuit size is also shown when derandomizing approximating circuits. The algorithmic consequence, motivating the title, is that randomness cannot substantially speed up dynamic programming algorithms.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coin Flipping in Dynamic Programming Is Almost Useless\",\"authors\":\"S. Jukna\",\"doi\":\"10.1145/3397476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider probabilistic circuits working over the real numbers and using arbitrary semialgebraic functions of bounded description complexity as gates. In particular, such circuits can use all arithmetic operations (+, −, ×, ÷), optimization operations (min and max), conditional branching (if-then-else), and many more. We show that probabilistic circuits using any of these operations as gates can be simulated by deterministic circuits with only about a quadratical blowup in size. A slightly larger blowup in circuit size is also shown when derandomizing approximating circuits. The algorithmic consequence, motivating the title, is that randomness cannot substantially speed up dynamic programming algorithms.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑工作在实数上的概率电路,并使用有界描述复杂度的任意半代数函数作为门。特别是,这样的电路可以使用所有的算术运算(+,−,x, ÷),优化运算(最小和最大),条件分支(if-then-else)等等。我们证明,使用这些操作中的任何一种作为门的概率电路都可以用确定性电路模拟,其大小只有大约二次放大。当非随机化近似电路时,电路尺寸也会略微增大。这一算法的结果是,随机性不能大大加快动态规划算法的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coin Flipping in Dynamic Programming Is Almost Useless
We consider probabilistic circuits working over the real numbers and using arbitrary semialgebraic functions of bounded description complexity as gates. In particular, such circuits can use all arithmetic operations (+, −, ×, ÷), optimization operations (min and max), conditional branching (if-then-else), and many more. We show that probabilistic circuits using any of these operations as gates can be simulated by deterministic circuits with only about a quadratical blowup in size. A slightly larger blowup in circuit size is also shown when derandomizing approximating circuits. The algorithmic consequence, motivating the title, is that randomness cannot substantially speed up dynamic programming algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信