用谱集中图核学习估计部分观测图信号

Gülce Turhan, Elif Vural
{"title":"用谱集中图核学习估计部分观测图信号","authors":"Gülce Turhan, Elif Vural","doi":"10.1109/mlsp52302.2021.9596282","DOIUrl":null,"url":null,"abstract":"Graph models provide flexible tools for the representation and analysis of signals defined over irregular domains such as social or sensor networks. However, in real applications data observations are often not available over the whole graph, due to practical problems such as sensor failure or connection loss. In this paper, we study the estimation of partially observed graph signals on multiple graphs. We learn a sparse representation of partially observed graph signals over spectrally concentrated graph dictionaries. Our dictionary model consists of several sub-dictionaries each of which is generated from a Gaussian kernel centered at a certain graph frequency in order to capture a particular spectral component of the graph signals at hand. The problem of jointly learning the spectral kernels and the sparse codes is solved with an alternating optimization approach. Finally, the incomplete entries of the given graph signals are estimated using the learnt dictionaries and the sparse coefficients. Experimental results on synthetic and real graph data sets suggest that the proposed method yields promising performance in comparison to reference solutions.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimating Partially Observed Graph Signals by Learning Spectrally Concentrated Graph Kernels\",\"authors\":\"Gülce Turhan, Elif Vural\",\"doi\":\"10.1109/mlsp52302.2021.9596282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph models provide flexible tools for the representation and analysis of signals defined over irregular domains such as social or sensor networks. However, in real applications data observations are often not available over the whole graph, due to practical problems such as sensor failure or connection loss. In this paper, we study the estimation of partially observed graph signals on multiple graphs. We learn a sparse representation of partially observed graph signals over spectrally concentrated graph dictionaries. Our dictionary model consists of several sub-dictionaries each of which is generated from a Gaussian kernel centered at a certain graph frequency in order to capture a particular spectral component of the graph signals at hand. The problem of jointly learning the spectral kernels and the sparse codes is solved with an alternating optimization approach. Finally, the incomplete entries of the given graph signals are estimated using the learnt dictionaries and the sparse coefficients. Experimental results on synthetic and real graph data sets suggest that the proposed method yields promising performance in comparison to reference solutions.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

图形模型提供了灵活的工具,用于表示和分析在不规则领域(如社交网络或传感器网络)上定义的信号。然而,在实际应用中,由于传感器故障或连接丢失等实际问题,通常无法获得整个图的数据观测结果。本文研究了多图上部分观测图信号的估计问题。我们在谱集中图字典上学习部分观测图信号的稀疏表示。我们的字典模型由几个子字典组成,每个子字典都是由一个以特定图频率为中心的高斯核生成的,以便捕获手头图信号的特定谱成分。采用交替优化方法解决了谱核和稀疏码的联合学习问题。最后,利用学习到的字典和稀疏系数估计给定图信号的不完全条目。在合成和真实图数据集上的实验结果表明,与参考解决方案相比,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Partially Observed Graph Signals by Learning Spectrally Concentrated Graph Kernels
Graph models provide flexible tools for the representation and analysis of signals defined over irregular domains such as social or sensor networks. However, in real applications data observations are often not available over the whole graph, due to practical problems such as sensor failure or connection loss. In this paper, we study the estimation of partially observed graph signals on multiple graphs. We learn a sparse representation of partially observed graph signals over spectrally concentrated graph dictionaries. Our dictionary model consists of several sub-dictionaries each of which is generated from a Gaussian kernel centered at a certain graph frequency in order to capture a particular spectral component of the graph signals at hand. The problem of jointly learning the spectral kernels and the sparse codes is solved with an alternating optimization approach. Finally, the incomplete entries of the given graph signals are estimated using the learnt dictionaries and the sparse coefficients. Experimental results on synthetic and real graph data sets suggest that the proposed method yields promising performance in comparison to reference solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信