riemann-liouville积分的两加权估计

V. Stepanov
{"title":"riemann-liouville积分的两加权估计","authors":"V. Stepanov","doi":"10.1070/IM1991V036N03ABEH002039","DOIUrl":null,"url":null,"abstract":"Weighted estimates (1)are considered, where the constant does not depend on , for fractional Riemann- Liouville integrals and the following problem is examined: find necessary and sufficient conditions on weight functions and under which estimate (1) is valid for all functions for which the right-hand side of (1) is finite. The problem is solved for and . This result is definitive, and it generalizes known results for integral operators when . Bibliography: 19 titles.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"TWO-WEIGHTED ESTIMATES OF RIEMANN-LIOUVILLE INTEGRALS\",\"authors\":\"V. Stepanov\",\"doi\":\"10.1070/IM1991V036N03ABEH002039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weighted estimates (1)are considered, where the constant does not depend on , for fractional Riemann- Liouville integrals and the following problem is examined: find necessary and sufficient conditions on weight functions and under which estimate (1) is valid for all functions for which the right-hand side of (1) is finite. The problem is solved for and . This result is definitive, and it generalizes known results for integral operators when . Bibliography: 19 titles.\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1991V036N03ABEH002039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1991V036N03ABEH002039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

考虑分数阶Riemann- Liouville积分的加权估计(1),其中常数不依赖,并研究了以下问题:找到权函数上的充分必要条件,在此条件下,估计(1)对(1)的右侧是有限的所有函数都有效。这个问题为和解决了。这个结果是确定的,它推广了积分算子的已知结果。参考书目:19篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TWO-WEIGHTED ESTIMATES OF RIEMANN-LIOUVILLE INTEGRALS
Weighted estimates (1)are considered, where the constant does not depend on , for fractional Riemann- Liouville integrals and the following problem is examined: find necessary and sufficient conditions on weight functions and under which estimate (1) is valid for all functions for which the right-hand side of (1) is finite. The problem is solved for and . This result is definitive, and it generalizes known results for integral operators when . Bibliography: 19 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信