一种预测股市指数的混合方法

G. Kaur, J. Dhar, Rangan K. Guha
{"title":"一种预测股市指数的混合方法","authors":"G. Kaur, J. Dhar, Rangan K. Guha","doi":"10.1504/IJAISC.2015.070638","DOIUrl":null,"url":null,"abstract":"The forecasting of stock market problem from the available data is quite often of uncertain nature, hence the stock market prediction is a very challenging and difficult task. In this paper, we have investigated the predictability of stock market of Bombay Stock Exchange BSE30, Hang Sang China Stock Index HS, Japan Stock Index NIKKEI and Taiwan Weighted Index TWI with adaptive network-based fuzzy inference system ANFIS combined with subtractive clustering technique. In this process, we compared stock markets with variable numbers of data clusters. Optimised subtractive clustering is used to cluster the data and create fuzzy membership functions. Finally, a hybrid learning algorithm has been used to combine least square method and back propagation gradient-decent method for training the fuzzy inference system. This paper represents a state of the art for ANFIS application to forecast stock market index.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid approach to forecast stock market index\",\"authors\":\"G. Kaur, J. Dhar, Rangan K. Guha\",\"doi\":\"10.1504/IJAISC.2015.070638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forecasting of stock market problem from the available data is quite often of uncertain nature, hence the stock market prediction is a very challenging and difficult task. In this paper, we have investigated the predictability of stock market of Bombay Stock Exchange BSE30, Hang Sang China Stock Index HS, Japan Stock Index NIKKEI and Taiwan Weighted Index TWI with adaptive network-based fuzzy inference system ANFIS combined with subtractive clustering technique. In this process, we compared stock markets with variable numbers of data clusters. Optimised subtractive clustering is used to cluster the data and create fuzzy membership functions. Finally, a hybrid learning algorithm has been used to combine least square method and back propagation gradient-decent method for training the fuzzy inference system. This paper represents a state of the art for ANFIS application to forecast stock market index.\",\"PeriodicalId\":364571,\"journal\":{\"name\":\"Int. J. Artif. Intell. Soft Comput.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAISC.2015.070638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2015.070638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于现有数据的股票市场预测问题往往具有不确定性,因此股票市场预测是一项非常具有挑战性和难度的任务。本文采用基于自适应网络的模糊推理系统ANFIS结合减法聚类技术,研究了孟买证券交易所BSE30、恒生中国股票指数HS、日本股票指数日经指数和台湾加权指数TWI的股票市场的可预测性。在这个过程中,我们用不同数量的数据簇来比较股票市场。采用优化的减法聚类方法对数据进行聚类,并建立模糊隶属函数。最后,将最小二乘法与反向传播梯度体面法相结合,采用混合学习算法对模糊推理系统进行训练。本文代表了应用ANFIS预测股票市场指数的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid approach to forecast stock market index
The forecasting of stock market problem from the available data is quite often of uncertain nature, hence the stock market prediction is a very challenging and difficult task. In this paper, we have investigated the predictability of stock market of Bombay Stock Exchange BSE30, Hang Sang China Stock Index HS, Japan Stock Index NIKKEI and Taiwan Weighted Index TWI with adaptive network-based fuzzy inference system ANFIS combined with subtractive clustering technique. In this process, we compared stock markets with variable numbers of data clusters. Optimised subtractive clustering is used to cluster the data and create fuzzy membership functions. Finally, a hybrid learning algorithm has been used to combine least square method and back propagation gradient-decent method for training the fuzzy inference system. This paper represents a state of the art for ANFIS application to forecast stock market index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信