{"title":"研究了具有多项式有界永久值的二部图的匹配问题","authors":"D. Grigoriev, Marek Karpinski","doi":"10.1109/SFCS.1987.56","DOIUrl":null,"url":null,"abstract":"It is shown that the problem of deciding and constructing a perfect matching in bipartite graphs G with the polynomial permanents of their n × n adjacency matrices A (perm(A) = nO(1)) are in the deterministic classes NC2 and NC3, respectively. We further design an NC3 algorithm for the problem of constructing all perfect matchings (enumeration problem) in a graph G with a permanent bounded by O(nk). The basic step was the development of a new symmetric functions method for the decision algorithm and the new parallel technique for the matching enumerator problem. The enumerator algorithm works in O(log3 n) parallel time and O(n3k+5.5 ¿ log n) processors. In the case of arbitrary bipartite graphs it yields an 'optimal' (up to the log n- factor) parallel time algorithm for enumerating all the perfect matchings in a graph. It entails also among other things an efficient NC3-algorithm for computing small (polynomially bounded) arithmetic permanents, and a sublinear parallel time algorithm for enumerating all the perfect matchings in graphs with permanents up to 2nε.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":"{\"title\":\"The matching problem for bipartite graphs with polynomially bounded permanents is in NC\",\"authors\":\"D. Grigoriev, Marek Karpinski\",\"doi\":\"10.1109/SFCS.1987.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that the problem of deciding and constructing a perfect matching in bipartite graphs G with the polynomial permanents of their n × n adjacency matrices A (perm(A) = nO(1)) are in the deterministic classes NC2 and NC3, respectively. We further design an NC3 algorithm for the problem of constructing all perfect matchings (enumeration problem) in a graph G with a permanent bounded by O(nk). The basic step was the development of a new symmetric functions method for the decision algorithm and the new parallel technique for the matching enumerator problem. The enumerator algorithm works in O(log3 n) parallel time and O(n3k+5.5 ¿ log n) processors. In the case of arbitrary bipartite graphs it yields an 'optimal' (up to the log n- factor) parallel time algorithm for enumerating all the perfect matchings in a graph. It entails also among other things an efficient NC3-algorithm for computing small (polynomially bounded) arithmetic permanents, and a sublinear parallel time algorithm for enumerating all the perfect matchings in graphs with permanents up to 2nε.\",\"PeriodicalId\":153779,\"journal\":{\"name\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"133\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1987.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The matching problem for bipartite graphs with polynomially bounded permanents is in NC
It is shown that the problem of deciding and constructing a perfect matching in bipartite graphs G with the polynomial permanents of their n × n adjacency matrices A (perm(A) = nO(1)) are in the deterministic classes NC2 and NC3, respectively. We further design an NC3 algorithm for the problem of constructing all perfect matchings (enumeration problem) in a graph G with a permanent bounded by O(nk). The basic step was the development of a new symmetric functions method for the decision algorithm and the new parallel technique for the matching enumerator problem. The enumerator algorithm works in O(log3 n) parallel time and O(n3k+5.5 ¿ log n) processors. In the case of arbitrary bipartite graphs it yields an 'optimal' (up to the log n- factor) parallel time algorithm for enumerating all the perfect matchings in a graph. It entails also among other things an efficient NC3-algorithm for computing small (polynomially bounded) arithmetic permanents, and a sublinear parallel time algorithm for enumerating all the perfect matchings in graphs with permanents up to 2nε.