有限元程序在双原子铍分子振动-旋转态计算中的应用

A. Gusev, O. Chuluunbaatar, S. Vinitsky, V. Derbov, A. Gózdz, P. Krassovitskiy, I. Filikhin, A. Mitin
{"title":"有限元程序在双原子铍分子振动-旋转态计算中的应用","authors":"A. Gusev, O. Chuluunbaatar, S. Vinitsky, V. Derbov, A. Gózdz, P. Krassovitskiy, I. Filikhin, A. Mitin","doi":"10.1109/ICUMT.2018.8631213","DOIUrl":null,"url":null,"abstract":"A computational scheme of the finite element method (FEM) is presented that allows the solution of the eigenvalue problem for a SOODE with the known potential function using the ODPEVP and KANTBP 4M programs that implements FEM in the Fortran and Maple, respectively. Numerical analysis of the solution using the KANTBP 4M program is performed for the SOODE exact solvable eigenvalue problem. The discrete energy eigenvalues and eigenfunctions are analyzed for vibrational and rotational states of the diatomic beryllium molecule solving the eigenvalue problem for the SOODE numerically with the table-valued potential function approximated by interpolation Lagrange and Hermite polynomials and its asymptotic expansion for large values of the independent variable specified as Fortran function. The efficacy of the programs is demonstrated by the calculations of twelve eigenenergies of vibrational bound states with the required accuracy, in comparison with those known from literature, and the vibrational-rotational spectrum of the diatomic beryllium molecule.","PeriodicalId":211042,"journal":{"name":"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","volume":"5 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Finite Element Method Programs to the Calculation of Vibration-Rotation States of a Diatomic Beryllium Molecule\",\"authors\":\"A. Gusev, O. Chuluunbaatar, S. Vinitsky, V. Derbov, A. Gózdz, P. Krassovitskiy, I. Filikhin, A. Mitin\",\"doi\":\"10.1109/ICUMT.2018.8631213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computational scheme of the finite element method (FEM) is presented that allows the solution of the eigenvalue problem for a SOODE with the known potential function using the ODPEVP and KANTBP 4M programs that implements FEM in the Fortran and Maple, respectively. Numerical analysis of the solution using the KANTBP 4M program is performed for the SOODE exact solvable eigenvalue problem. The discrete energy eigenvalues and eigenfunctions are analyzed for vibrational and rotational states of the diatomic beryllium molecule solving the eigenvalue problem for the SOODE numerically with the table-valued potential function approximated by interpolation Lagrange and Hermite polynomials and its asymptotic expansion for large values of the independent variable specified as Fortran function. The efficacy of the programs is demonstrated by the calculations of twelve eigenenergies of vibrational bound states with the required accuracy, in comparison with those known from literature, and the vibrational-rotational spectrum of the diatomic beryllium molecule.\",\"PeriodicalId\":211042,\"journal\":{\"name\":\"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)\",\"volume\":\"5 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUMT.2018.8631213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUMT.2018.8631213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用ODPEVP和KANTBP 4M分别在Fortran和Maple语言中实现有限元的计算方案,求解具有已知势函数的SOODE的特征值问题。利用KANTBP 4M程序对sode精确可解特征值问题进行了数值分析。分析了双原子铍分子振动态和转动态的离散能量本征值和本征函数,用插值拉格朗日多项式和埃尔米特多项式近似的表值势函数及其在自变量Fortran函数大值时的渐近展开式数值求解了sode的本征值问题。通过计算振动束缚态的十二个本征能(与文献中已知的计算结果相比)和双原子铍分子的振动-旋转谱,证明了程序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Finite Element Method Programs to the Calculation of Vibration-Rotation States of a Diatomic Beryllium Molecule
A computational scheme of the finite element method (FEM) is presented that allows the solution of the eigenvalue problem for a SOODE with the known potential function using the ODPEVP and KANTBP 4M programs that implements FEM in the Fortran and Maple, respectively. Numerical analysis of the solution using the KANTBP 4M program is performed for the SOODE exact solvable eigenvalue problem. The discrete energy eigenvalues and eigenfunctions are analyzed for vibrational and rotational states of the diatomic beryllium molecule solving the eigenvalue problem for the SOODE numerically with the table-valued potential function approximated by interpolation Lagrange and Hermite polynomials and its asymptotic expansion for large values of the independent variable specified as Fortran function. The efficacy of the programs is demonstrated by the calculations of twelve eigenenergies of vibrational bound states with the required accuracy, in comparison with those known from literature, and the vibrational-rotational spectrum of the diatomic beryllium molecule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信